
size of the data sets. We then standardized the inputs to have zero 
mean and unit variance. The final training sets at each signal-to-
noise ratio (SNR) contained about 100,000 time-series vectors 
produced from 4,000 templates of BBH signals by adding multiple 
batches of noise and shifting in time. The validation and testing 
sets at each SNR contained about 25,000 elements, produced from 
586 clean templates and different noise realizations. 

We designed simple deep neural networks (DNNs) from the 
ground up, since deep learning alternatives to matched filtering 
had not been proposed before. We tested around 80 configurations 
of DNNs, and found that a design with three convolutional layers 
followed by two fully connected layers yielded the best results. We 
utilized the neural network functionality in the Wolfram Language, 
based on the MXNet framework, which utilizes the CUDA deep 
learning library for acceleration with NVIDIA GPUs. We used 
the ADAM method as our learning algorithm.

We developed a new strategy to improve the performance and 
reduce the training times of the DNNs. By starting with training 
inputs having a high SNR of less than 16, and then gradually 
increasing the noise in each subsequent training session until a 
final SNR of 0.06, we observed that the performance of prediction 
can be quickly maximized for low SNRs. Our algorithm can be 
applied to a continuous data stream using a 1-second sliding 
window with offsets of 0.2 seconds.

RESULTS & IMPACT
We trained our classifier to achieve 100% accuracy with zero 

false positives for signals with a SNR > 0.36. For comparison, we 
trained standard implementations of all commonly used machine 
learning classifiers along with the DNNs on a training set of 8,000 
elements. Unlike DNNs, none of these algorithms was able to 
directly handle raw noisy data, as shown in Fig. 1. 

Our predictor successfully measured binary component masses 
given noisy GW signals that were not used for training, with an 
error of the same order as the spacing between templates for a 
SNR > 1. Although our initial goal was to create a pipeline for only 
non-spinning, quasi-circular BBH signals, we tested our DNNs 
using moderately eccentric simulations that we obtained using 
the Einstein Toolkit on the Blue Waters supercomputer. The 
classifier detected all these signals with nearly the same rate as 
the original test set (with over 99.7% mean accuracy for SNR > 
0.36 and 100% accuracy at SNR > 0.5). The predictor was able to 
estimate the component masses of our eccentric simulations for 
SNR > 0.25 with a mean relative error less than 13%, 19%, 32%, 
and 34% for mass-ratio 1, 2, 3, and 4, respectively. This result is 
very encouraging, since these types of signals go unnoticed with 
aLIGO detection [5]. 

Our DNNs are only 2MB in size each. The average time taken for 
evaluating them per input of 1 second duration is approximately 
6.7 milliseconds and 135 microseconds using a single CPU or 
GPU, respectively. For comparison, we estimated the evaluation 
time for time-domain matched filtering with the template bank of 
clean signals used for training; the results are shown in Fig. 2. Our 

extremely fast inference rate indicates that real-time analysis can 
be carried out with a single computer even with DNNs that are 
significantly larger, and can be trained over much bigger template 
banks of signals.

WHY BLUE WATERS
Blue Waters enabled us to create a large catalog of eccentric 

numerical relativity simulations, which required thousands of 
node hours that we ran in parallel to sample a deep region of 
parameter space. No other resource but Blue Waters can provide 
the required computational power to obtain a numerical relativity 
catalog of this nature in a timely manner. 
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EXECUTIVE SUMMARY
The detection of gravitational waves has opened up a new 

spectrum of observation into the Universe. The LIGO flagship 
detection pipelines target a specific class of binary black holes 
that generate burst-like gravitational wave signals. In order to 
capitalize on the unique opportunities that gravitational wave 
astrophysics presents for new discoveries, it is necessary to extend 
the depth of gravitational wave searches to extract signals that 
currently go unnoticed with these pipelines. To address this 
issue, we introduce Deep Filtering: a new method that combines 
two deep convolutional neural networks for classification and 
regression to detect and characterize signals much weaker than 
background noise. We show that Deep Filtering significantly 
outperforms conventional machine learning techniques and 
enables the detection of new classes of gravitational wave signals 
that go unnoticed with existing detection algorithms. 

RESEARCH CHALLENGE
Advanced LIGO (aLIGO) detection algorithms have confirmed 

the existence of a particular class of gravitational waves (GWs) 
using a 3D search: quasi-circular, spin-aligned binary black holes 

(BBHs). Extending these searches to target the full 8D parameter 
space of astrophysically motivated sources presents outstanding 
computational challenges [1, 2, 3]. 

Multimessenger searches of electromagnetic (EM) and astro-
particle counterparts of GW transients rely on accurate and low-
latency GW analyses, which at present take from days to months 
to finish. To overcome these limitations, we introduce Deep 
Filtering, a deep learning algorithm to directly process aLIGO 
data, which outperforms other machine-learning methods, and 
is many orders of magnitude more computationally efficient than 
matched filtering for both detection and parameter estimation. 

METHODS & CODES
We consider a 2D parameter space that describes non-spinning 

BHs on quasi-circular orbits, with masses between 5 and 75 solar 
masses, and mass-ratios of 1 to 10. We generate our data sets using 
the surrogate waveform family introduced in [4]. The mass-ratio 
values of the BBH signals are between 1 and 10 in steps of 0.1 for 
training, and intermediate values for testing. 

We superimposed different realizations of Gaussian white noise 
on top of the signals over multiple iterations, thus amplifying the 

Figure 1: Mean relative error obtained by various machine learning algorithms 
for predicting a single parameter, i.e., mass-ratio, using a training set containing 
about 8,000 elements at SNR (Signal-to-Noise Ratio) = 0.36. Scaling these methods 
to predict multiple parameters is often difficult, whereas it simply involves adding 
more neurons to the final layer of neural networks.

Figure 2: For a given template bank, Deep Filtering is many orders of magnitude 
faster than matched filtering. The evaluation time of a Deep Neural Network is 
constant regardless of the size of training data, whereas for matched filtering it is 
proportional to the size of the template bank.
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