Extreme events, resolution and a new parallel algorithm for turbulent mixing on Blue Waters

P.K. Yeung (PI)
Matthew P. Clay (PhD student)

Georgia Tech (Schools of AE and ME)
E-mail: pk.yeung@ae.gatech.edu

NSF: PRAC (1036170, 1640771) and Fluid Dynamics Programs
BW Team, Cray: Scaling, Reservations, Help Requests, Storage, Visualization
Collaborators: T. Gotoh, S.B. Pope, B.L. Sawford, K.R. Sreenivasan

Blue Waters Symposium, May 16-19, 2017
Disorderly fluctuations: unsteady, 3D, multiscale, nonlinear
 — prevalent in many fields of science and engineering
 — effective mixing (coupling with molecular diffusion)

Higher Reynolds no \((UL/\nu) \): wider range of scales, more uncertainty, larger number of degrees of freedom; \(\Rightarrow \) more CPU power needed
A Two-Part Presentation

1. Extreme events and resolution effects in simulation of high Reynolds no. turbulence, on world-leading scale
 - Fundamentals of wide implication, despite idealized geometry
 - Fourier pseudo-spectral, benefits from favorable network topology
 - 8192^3 and 16384^3 grid resolution

2. Turbulent mixing at low molecular diffusivity, with novel algorithm that achieves 6% of peak on BW
 - A multi-resolution problem, suggesting hybrid approaches
 - Velocity on coarser grid, passive scalar on finer grid
 - Compact finite difference, nested OpenMP parallelism
Extreme Events and Turbulence

- High intensity, rare, localized in space and/or short-lived in time
- Fluid elements experiencing extreme local deformation
 - rate of strain (change in shape)
 - rate of rotation (change in orientation)
- Search for self-similarity: scaling exponents of dissipation rate are central in turbulence theory addressing fine-scale intermittency
- Very sensitive to Reynolds number, and more:
 - small-scale resolution and sampling are both important
- On Blue Waters: first 8192^3 simulation of homogeneous isotropic turbulence on a periodic domain, focus on fundamental issues
- A short simulation at 16384^3 has also been performed
The Computational Approach

- Direct numerical simulation (DNS): use exact equations of motion
 (Navier-Stokes; $\nabla \cdot u = 0$ for constant density)

\[
\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \left(\frac{p}{\rho} \right) + \nu \nabla^2 u + f
\]

- Fourier pseudo-spectral: high accuracy, but communication-intensive
 - massive parallelism: 2D (pencils) domain decomposition

- BW: MPI, Co-Array Fortran, 8192^3 w/ favorable topology:
 - 8.897 secs/step on 262,144 cores; 30 secs on 65,536
 - I/O is usually fast: 4 TB in a minute or less
 - postprocessing and on-the-fly processing
 - VISIT for 3D scientific visualization

- To span several large-eddy time scales: $O(10^5)$ time steps
Intermittency and Local Averaging

- Dissipation rate and enstrophy as quadratic measures of local strain and rotation rates (vorticity):

\[\epsilon \equiv 2\nu s_{ij} s_{ij} \quad ; \quad \Omega \equiv \omega_i \omega_i \]

- Kolmogorov (1941): averaged \(\langle \epsilon \rangle \) represents rate of energy transfer (cascade) from large scales to small scales

- Kolmogorov Refined Similarity (1962): average locally over a volume of space of linear dimension \(r \) at inertial (intermediate) scales

\[\epsilon_r(x, t) = \frac{1}{\text{Vol}} \int_{\text{Vol}} \epsilon(x + r', t) \, dr' \]

- Although 3D averages are important, they are not often reported:
 - averaging along a line (1D) is much easier
 - 1D surrogate \((\partial u/\partial x)^2 \) often used in experiments
 - DNS: also, nontrivial due to domain decomposition
At smallest scales, very large higher-order moments, such as $\langle (\epsilon_r/\langle \epsilon \rangle)^m \rangle \ (m > 1)$ are expected, as a result of intermittency and extreme events (Yeung et al. JFM 2012, PNAS 2015):

Data from high $Re 8192^3$ simulation: ϵ (solid) and Ω (dashed)

The importance of 3D averages: strong indication of an “inertial” scaling range around $60 \leq r/\eta \leq 600$; both ϵ and Ω
Higher-order Scaling Exponents (Preliminary)

- Inertial: $\langle \epsilon_r^q \rangle / \langle \epsilon \rangle^q \propto (r/\eta)^{-\tau_q}$

- Find τ_q: look for best fit of flat region for $\langle \epsilon_r^q \rangle / \langle \epsilon \rangle^q (r/\eta)^{\tau_q}$.

- Orders 2-6, 8192³ datasets
 0.23, 0.70, 1.40, 2.35, 3.40

 Close to Log-normal theory:
 $\tau_q = \mu q (q - 1)/2$
 0.23, 0.69, 1.38, 2.30, 3.45

- To compare with past 1D results (Sreenivasan & Antonia 1997)

- Same exponents for ϵ_r (solid) and Ω_r (dashed)
Are these results accurate and reliable?

8192³ DNS: a decent match in Re for many experiments, but showing much more “extreme” fluctuations than in past literature.

How do we assess adequacy of small-scale resolution?

- Refine the grid spacing, run again with same physical parameters
 - perform a yet-larger simulation: expensive, may be unfeasible
 - comparisons contaminated by statistical variability

- Take existing dataset, coarsen grid spacing, compare the results
 - if discrepancies are small, then solution is accurate enough
 - can quantify, e.g. what fraction of extreme events would be missed if resolution were degraded
 - a post-processing task at modest cost, that allows us to isolate effects of truncation error from statistical sampling
Tests of accuracy, up to 163843

Compensated plots using same exponents as found for
(a) 81923 ensemble-averaged scaling of 3D averages, $k_{max}\eta \approx 2$
(b) single 163843 snapshot, by grid refinement, $k_{max}\eta \approx 3.8$
(c) filter from (b) to 81923 resolution, $k_{max}\eta \approx 1.9$

- $q = 6$
- $q = 4$
- $q = 2$

- Great variability at small r (dominated by extreme events)
- But relatively robust scaling in inertial range
Why Blue Waters

- Turbulence as a Grand Challenge in Science:
 - unsteady, 3D, nonlinear, stochastic, wide range of scales
 - smaller simulations often compromised in physics or accuracy needed for applications where turbulence is the critical process

- Turbulence as a Grand Challenge in Computing:
 - first 4096^3 simulation was performed in Japan (2002)
 - on BW: the first production 8192^3 (16X more expensive)

- Would be impossible if not for BW:
 - very large resource allocation on multi-Pflop machine
 - dedicated and expert staff assistance (even late nights!)
 - generous storage capacity (2 PB)
Temperature or concentration fields in a turbulent flow
- Dynamically passive scalars governed by advection-diffusion equation
- The Schmidt number \((Sc = \nu/D)\) varies over a wide range
 - \(Sc\): \(O(0.01)\) liquid metals, \(O(1)\) gas-phase, \(O(1000)\) salinity in ocean

Low diffusivity is more difficult in both experiment and DNS
- Fluctuations arise at scales smaller than those in velocity field
- Fundamental differences in shape of spectrum, intermittency, etc.

A dual-resolution, dual-numerical-scheme code
- Velocity on coarser grid, scalar on finer grid
- Compact finite differences for scalar (Gotoh et al. JCP 2012)
- How do we design a parallel algorithm for best efficiency?
Computational Challenges: Range of Scales

Broad range of scales in scalar field at high Sc (low diffusivity)

- Small scales for velocity field on the order of the Kolmogorov scale η
- Small scales in scalar field given by the Batchelor scale $\eta_B = \eta Sc^{-1/2}$

Figure: Scalar (left, 1024^3) $Sc = 8$ and (middle, 8192^3) $Sc = 512$ at $R_\lambda = 140$.
Equations and Dual Numerical Scheme

- Velocity field on coarser grid: Navier-Stokes equations, via usual Fourier pseudo-spectral method (3D FFTs)
- Scalar fluctuations on finer grid (Gotoh et al., JCP 2012), with uniform mean scalar gradient:

\[
\frac{\partial \theta}{\partial t} + \mathbf{u} \cdot \nabla \theta = D \nabla^2 \theta - \mathbf{u} \cdot \nabla \langle \Theta \rangle
\]

- Eighth-order combined compact finite differences (Mahesh, JCP 1998)
- Computes first and second derivatives in all 3 directions
- Much less communication than typical FPS codes

Diagram:

- Velocity Field
- Interpolation
- Scalar Field
Algorithm for $Sc \gg 1$ on Blue Waters

Want high Sc, while ensuring accuracy at moderate Reynolds no.

- Velocity: $R_\lambda = 140, N_v = 1024, k_{max,v}\eta = 5.6$ (512 cores)
- Scalar: $Sc = 512, N_\theta = 8192, k_{max,\theta}\eta_B = 2.0$ (262,144 cores)

Use disjoint groups of processors for velocity and scalar fields

- To form advective term, send well-resolved velocity field to scalar communicator, and perform tricubic interpolation
- Overlap inter-communicator transfer with CCD operations on scalar
Scheme is implicit: all points along grid line coupled. Must solve linear system \(Ax = b \) for each grid line in all three coordinate directions.

To avoid memory transposes, adopt a static 3D domain decomposition:
- Implies that no processor ever has data in-core to solve CCD system
- Adopt parallel algorithm (Nihei et al.) to solve system

Operation Summary

<table>
<thead>
<tr>
<th>Op.</th>
<th>Operation Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fill ghost layers for scalar field with SEND and RECV operations</td>
</tr>
<tr>
<td>B</td>
<td>Form right-hand-side of linear system and obtain solution</td>
</tr>
<tr>
<td>C</td>
<td>Pack and distribute data for reduced system with MPI_ALLTOALL</td>
</tr>
<tr>
<td>D</td>
<td>Unpack data and solve reduced linear system</td>
</tr>
<tr>
<td>E</td>
<td>Pack and distribute data for final solution with MPI_ALLTOALL</td>
</tr>
<tr>
<td>F</td>
<td>Unpack data and finalize solution of CCD linear system</td>
</tr>
</tbody>
</table>

Operations for three coordinate directions are independent
- Try to overlap communication with computation
Overlapping Communication with Computation

Achieve overlap by interleaving communication and computation operations for all three coordinate directions in one subroutine.

1. Use non-blocking communication calls from MPI
 - Post communication call for next coordinate direction (e.g., x_2) before proceeding with computations for current direction (e.g., x_1)
 - Use MPI_WAIT to ensure results are ready, when needed

2. Using dedicated communication threads in a MPI/OpenMP approach
 - Goal: one thread per NUMA domain to communicate, while others compute
 - Thread synchronization: use OpenMP locks
 - Use one lock for each coordinate direction
 - Thread must obtain lock for a given coordinate direction before doing work
 - Work-sharing the computations: use nested OpenMP parallelism
 - Initial comput. thread spawns nested parallel region to use rest of threads
 - Loops cannot be partitioned evenly: explore GUIDED and DYNAMIC scheduling
Using Dedicated Communication Threads

CALL OMP_SET_LOCK(x2) CALL OMP_SET_LOCK(x3)

! Spin until the x1 lock is set.
test= .TRUE.
DO WHILE(test)
 test=OMP.TEST_LOCK(x1)
 IF (test) CALL OMP_UNSET_LOCK(x1)
END DO

COMMUNICATE x2 [A2]
CALL OMP_UNSET_LOCK(x2)

COMMUNICATE x3 [A3]
CALL OMP_UNSET_LOCK(x3)

CALL OMP_SET_LOCK(x1)
COMMUNICATE x1 [C1]
Figure: Scalability of scalar field computation using different versions of the CCD routines: □ single-threaded, blocking; △▽○ (2,4,8 threads) multi-threaded, blocking; ■ single-threaded, overlapped; ▲▼● multi-threaded, overlapped; ★ one dedicated communication thread per NUMA domain.
Spectrum of Passive Scalar at High Schmidt Number

- Theory predicts k^{-1} in the viscous-convective range ($1/\eta \ll k \ll 1/\eta_B$).
- Kraichnan: exponential, not Gaussian (Batchelor), in diffusive range

$$E_\theta(k) = C_B \langle \chi \rangle (\langle \epsilon \rangle / \nu)^{-1/2} k^{-1} (1 + \sqrt{6} C_B k \eta_B) \exp(-\sqrt{6} C_B k \eta_B)$$

- Considerable scatter in C_B (Donzis et al. FTC 2010, Gotoh et al. 2014)
Simulations of turbulence at 8192^3 grid resolution conducted using PRAC allocation of BW resources:

- isotropic turbulence at high Reynolds number w/ good scale resolution
- study of turbulent dispersion under the same conditions (reported at BW Symposium last year)
- turbulent mixing at high Schmidt number, using a newly-developed advanced parallel algorithm (Clay et al. CPC 2017)

Ongoing and future work (re: PRAC renewal award)

- A penultimate Petascale computational turbulence laboratory
- Magnetohydrodynamic turbulence (at low magnetic Reynolds no.)