Effects of Forcing Scheme on the Flow and the Relative Motion of Inertial Particles in DNS of Isotropic Turbulence

Rohit Dhariwal and Vijaya Rani

PI: Sarma L. Rani

Department of Mechanical and Aerospace Engineering
The University of Alabama in Huntsville

NCSA Blue Waters Symposium
May 16-19, 2017
Sunriver, OR
Outline

1. Motivation for Current Problem

2. Background

3. Parallel Performance of DNS code

4. Effects of Forcing Scheme in DNS on Motion of Inertial Particles
Motivation for Current Problem
Particle-laden turbulent flows are important both in natural and engineering applications such as:

- **Warm-Cloud Precipitation**: Atmospheric scientists are investigating if turbulence augments water-droplet growth rates by increasing droplet collision rates, which may hasten rainfall initiation.

- **Planetesimal Formation**: Astrophysicists are interested in knowing if turbulence-driven dispersion, sedimentation, and collisional coalescence of dust particles impact planetesimal formation.
Volcanic Eruption: Understanding dispersion of volcanic particles in the atmosphere is of interest

Spray Dynamics in Engines: Effects of turbulence on atomization, dispersion, and evaporation of fuel droplets is the relevant physics

In these applications, we are interested in quantifying the effects of turbulence on particle-pair relative motion.
Particle-Pair Relative Motion

- Pair relative motion refers to the temporal and spatial dynamics of pair separations r and relative velocities U.

- Turbulence is known to spatially homogenize passive scalars.

- However, it induces strong inhomogeneities in inertial particle relative motion, which are of two kinds:
 - **Spatial Inhomogeneities**: Particle preferential concentration, quantified by Radial Distribution Function (RDF) $g(r)$.
 - **Relative Velocity Inhomogeneities**: Non-Gaussian relative velocity distribution, described by pair relative velocity PDF $P(U_r)$.

- Through these two statistics, one can study the role of turbulent fluctuations in driving particle collision frequency:

 \[
 N_c = 4\pi \sigma^2 g(\sigma) \int_{-\infty}^{0} U_r P(U_r|\sigma) \, dU_r
 \]
Particle response to turbulence is controlled by its inertia, as quantified by the Stokes number \(St = \tau_v / \tau_{\text{flow}} \)

- \(\tau_v \) is particle viscous relaxation time and \(\tau_{\text{flow}} \) is a flow time scale

When particle Stokes number \(St_\eta = \frac{\tau_v}{\tau_\eta} \approx 1 \)

- Denser-than-fluid particles accumulate in regions of excess strain-rate over rotation-rate, i.e. where \(S^2 - \Omega^2 > 0 \)
DNS of isotropic turbulence by Reade and Collins1 demonstrates the effects of St_η on clustering.

$h(r) > 0$ is indicative of particle preferential concentration.

DNS of Sundaram and Collins2 illustrates the nature of relative velocity PDF at various separations:

- Gaussian relative velocity PDF at integral-scale pair separations
- Non-Gaussian relative velocity PDF with a peak and a long tail at smaller separations; $\sigma = \text{sum of particle radii (at contact)}$

Therefore, a closure theory should capture both preferential concentration and Gaussian to Non-Gaussian PDF transition

Background
In a recent study3, we derived a closure for diffusion current in the PDF kinetic equation for the relative motion of high-Stokes-number particle pairs in isotropic turbulence.

For $St_r \gg 1$ particles, the pair PDF $\Omega(r, U)$ is governed by:

$$\frac{\partial \Omega}{\partial t} + \nabla_r(U\Omega) - \frac{1}{\tau_v} \nabla U \cdot (U\Omega) - \nabla U \cdot (D_{UU} \cdot \nabla U \Omega) = 0$$

3Rani, Dhariwal, and Koch, JFM, Vol. 756, 2014
Stochastic Theory \((St_r = \tau_v/\tau_r \gg 1)\)

- For \(St_r \gg 1\) particles, it was shown that diffusivity

\[
D_{UU} = \frac{1}{\tau_v^2} \int_{-\infty}^{0} \langle \Delta u(r, x, 0) \Delta u(r, x, t) \rangle \, dt
\]

- In \(St \gg 1\) regime, pair separation \(r\) and center of mass position \(x\) remain essentially fixed during fluid time scales

- Therefore, \(\langle \Delta u(r, x, 0) \Delta u(r, x, t) \rangle\) is a Eulerian two-time correlation

- \(D_{UU}\) can be closed by computing Eulerian two-time relative velocity correlation \(\langle \Delta u(r, x, 0) \Delta u(r, x, t) \rangle\) from DNS

- In our prior study, \(D_{UU}\) was closed by converting the two-time relative velocity correlation into two-point correlation in the limit of \(St_r \gg 1\)
Evaluating \(\langle \Delta u(r, x, 0) \Delta u(r, x, t) \rangle \) using DNS is computationally very expensive

Important parameters: \(N_{\text{pairs}} \) and \(\Delta r \) (pair separation bin size)

Considered \(5 \times 10^{11} \) stationary particle pairs and \(\Delta r = \eta / 8 \)

 \(\eta \) is Kolmogorov length scale

Correlations computed using 20,000 processors

Binning of \(\Delta u(r, x, t) \Delta u(r, x, t + \tau) \) according to \(r \) for all the pairs separated by a time interval \(\tau \) required 40 hours of wall-clock time
Parallel Performance of DNS code
1D Domain Decomposition

- Domain decomposition along one direction
- N^3 simulations can be run on up to N processors
- Limited to small Re_λ

Figure: (a) XZ slabs; (b) YZ slabs
2D Domain Decomposition

- Domain decomposition along two directions
- N^3 simulations can be run on up to N^2 processors
- Allows higher flow Re_λ

Figure: (a) X; (b) Y; (c) Z pencils
Strong Scaling

- Strong scaling for 2D parallel code

![Graph showing strong scaling for 2D parallel code. The graph compares ideal speedup with measured speedup across different processor counts. The ideal speedup is represented by a dashed line, and the measured speedup is represented by a solid line with data points. The x-axis represents the number of processors, while the y-axis represents the speedup compared to 1024 processors. The graph demonstrates a linear relationship between the number of processors and the speedup.]
Effects of Forcing Scheme in DNS on Motion of Inertial Particles
Governing Equations

- Fluid phase governing equations

\[\nabla \cdot \mathbf{u} = 0 \]
\[\frac{\partial \mathbf{u}}{\partial t} + \boldsymbol{\omega} \times \mathbf{u} = -\nabla \left(\frac{p}{\rho_f} + \frac{\mathbf{u}^2}{2} \right) + \nu \nabla^2 \mathbf{u} + \mathbf{f}_f \]

- \(\mathbf{f}_f \) is external forcing to maintain a statistically stationary turbulence

- Particle phase governing equations

\[\frac{d\mathbf{x}_p}{dt} = \mathbf{v}_p \]
\[\frac{d\mathbf{v}_p}{dt} = \frac{\mathbf{u}(\mathbf{x}_p, t) - \mathbf{v}_p}{\tau_v} \]

- \(\mathbf{u}(\mathbf{x}_p, t) \) obtained using 8\(^{th}\) order Lagrange interpolation
Recall, large scale external forcing is added to N-S equation to maintain statistically stationary turbulence.

Deterministic forcing\(^4\): Turbulent kinetic energy dissipated during a time step is added back to the velocity field.

Stochastic forcing\(^5\): Random forcing acceleration based on Ornstein-Uhlenbeck process is added to the velocity components.

- Two important parameters: acceleration variance, \(\sigma_f^2\) and forcing time-scale, \(T_f\).

Both forcing schemes add energy to a low-wavenumber band.

\(^4\)Witkowska et al., J Comput Acoust 1997;5:317–36

\(^5\)Eswaran & Pope, Comput Fluids 1988;16:257–78
Deterministic Forcing (DF) Scheme

- Turbulence is initialized with a certain amount of turbulent kinetic energy (TKE).
- In our DF, we maintain TKE constant as turbulence evolves temporally.
- Energy dissipated during Δt is resupplied to the spectral velocity components in the range $\kappa \in (0, \sqrt{2}]$.
- This is done by scaling velocity components in the forcing wavenumber band:

$$\hat{u}(\kappa, t + \Delta t) = \hat{u}(\kappa, t + \Delta t) \sqrt{1 + \frac{\Delta E_{\text{diss}}(\Delta t)}{\int_{\kappa_{\text{min}}}^{\kappa_{\text{max}}} E(\kappa, t + \Delta t) d\kappa}}$$

$\kappa = |\kappa|$ such that $\kappa \in (0, \sqrt{2}]$, $[\kappa_{\text{min}}, \kappa_{\text{max}}]$ is the entire wavenumber range of the DNS.
Here TKE is not kept constant in the stochastic scheme

Instead, a random acceleration term \hat{f} is added to N-S equations

\hat{f} computed from six independent Uhlenbeck-Ornstein processes

\[
\hat{f} = \hat{b}(\kappa, t) - \kappa \kappa \cdot \hat{b}(\kappa, t)/(\kappa \cdot \kappa)
\]

\[
\hat{b}(\kappa, t + \Delta t) = \hat{b}(\kappa, t) \left(1 - \frac{\Delta t}{T_f}\right) + \theta \left(\frac{2\sigma^2 \Delta T}{T_f}\right)^{1/2}
\]

$\hat{b}(\kappa, t)$ is an UO process having σ^2 as the variance and T_f time-scale

Forcing time-scale T_f is a key parameter, whose effects are studied

\hat{f} non-zero only for $\kappa \in (0, \sqrt{2}]$
DNS parameters

- Three grid resolutions considered: 128^3, 256^3 and 512^3
- Re_λ achieved: 76, 131 and 196
- Twelve particle St_η ranging from 0.05 to 40 considered
- Particles per St_η
 - 262,144 for 128^3 and 256^3
 - 2,097,152 for 512^3
- Forced wave-numbers range for both schemes, $|\kappa| \in (0, \sqrt{2}]$
- Five T_f considered: $T_e/4$, $T_e/2$, T_e, $2T_e$ and $4T_e$
 - T_e is the eddy turnover time obtained using deterministic forcing
- Thus a total of $6 \times 3 = 18$ DNS runs were performed
Effects of Forcing on RDF for $St_\eta \geq 1$ at $Re_\lambda = 80$.

DNS of Inertial Particles

May 16, 2017
Effects of Forcing on RDF for $St_\eta \geq 1$ at $Re_\lambda = 210$
Blue: \(r = 2\eta \) and Green: \(r = L/2 \)

DF, SF3 and SF4 are compared
Effects of St_η at $r = 2\eta$ and $r = L/2$ are shown

PDFs shown only for DF
Conclusions

- Computed diffusivity tensor using DNS
- Pair statistics obtained using the analytical model are in good agreement with DNS statistics
- Studied the effects of large scale forcing in DNS on pair relative motion statistics
- The computational resources of Blue Waters allowed us to perform these computationally intensive DNS simulations