High Resolution Earth System Modeling using Blue Waters Capabilities

Susan Bates
National Center for Atmospheric Research
Petascale Computing Resources Allocation (PRAC)

Zach Zobel (U. Illinois)
Justin Small, Christine Shields (NCAR)
NCAR collaborators: Nan Rosenbloom, Warren Washington, Julio Bacmeister, Colin Zarzycki, Kevin Reed, Rich Neale, John Truesdale, Cecile Hannay, Gary Strand

NCAR is supported by the National Science Foundation
High Resolution Earth System Modeling using Blue Waters Capabilities

Susan Bates
National Center for Atmospheric Research
Petascale Computing Resources Allocation (PRAC)

Zach Zobel (U. Illinois)
Justin Small, Christine Shields (NCAR)
NCAR collaborators: Nan Rosenbloom, Warren Washington,
Julio Bacmeister, Colin Zarzycki, Kevin Reed, Rich Neale, John
Truesdale, Cecile Hannay, Gary Strand

NCAR is supported by the National Science Foundation
Why Blue Waters?

• 0.25° atmos/land – only (30 years)
 o 12K node-hours per model year = 0.36M node-hours for one simulation
 o 4 present day – 8 future scenarios (~4.3M)

• Fully-coupled 0.5° atmos/land - 1° ocean/sea ice
 o 1 PI control, 3 20th Century, 12 future scenarios

• Fully-coupled 0.25° atmos/land - 1° ocean/sea ice
 o 10-12K node-hours per model year = 1-1.8M node-hours for one simulation
 o 1 PI control, 2 climate sensitivity, 3 20th Century, 6 future scenarios (~12M-21M)

• Fully-coupled 0.25° atmos/land – 0.1° ocean/sea ice
 o 32.3K node-hours per model year = 3.23M node-hours for one simulation
 o 1 PI control, 1 20th Century, 2 future scenarios (~13M)
Comparison Between Present and Future Precipitable Water

CAM Precipitable Water (TMQ)

Present (1990)

Future (2090, RCP8.5)

Jan 01
Tropical Cyclone (TC) Tracks

Observations: IBTrACS

Tropical cyclone algorithm and tracker follows Zhao et al. (2009) using 3-hourly model output.

Courtesy Kevin Reed, see also Wehner et al. (2014, JAMES)
Extra-tropical Storm (ETC) Tracks
(for one model year)

0.25° atmos-only

Extratropical cyclone tracks and storm properties are found using TempestExtremes (Ullrich and Zarycki, 2016).
Present Day and Future ETC Storm Count

0.25° atmos-only

- **Global**
 - Present Day 1985-2005
 - Present Day 1985-2005 (modified dust)
 - Future RCP8.5 2070-2090
 - Future RCP8.5 2070-2090 (modified SST)

- **Atlantic**

- **S. Hemisphere**

- **Pacific**

- **Ensemble Member**
Present Day and Future ETC Track Density

0.25° atmos-only

All storms

Units are average hours per year in which a storm is found within a 4° x 4° gridbox
Eady Growth Rate (850mb)

0.25° atmos-only

Units = day$^{-1}$

Present Day

Future
High Resolution Ocean

0.25° atmos - 0.10° ocean

1° atmos – 1° ocean
High Resolution Ocean

0.25° atmos - 0.10° ocean
Ocean Resolution

0.25° atmosphere
1° vs 0.10° ocean

Sample UK Events,
TMQ

Movies of 1 year’s worth of AR events strung together

1 degree
0.1 degree
Ocean Warming Trends

Pershing et al. (2015)
Compared to 1° CESM

1° atmos – 1° ocean

1° atmos - 0.10° ocean

Courtesy Justin Small
Future Changes in Days that exceed 95°F

12km atmos

RCP4.5 – Present Day

RCP8.5 – Present Day
Regional Maximum Temperature

12km atmos

Midwest

Northeast

Southeast
Publications

Definitions

Tracking Algorithm

\[ZN = |Q_{\text{threshold}}| \geq |Q_{\text{mean}}| + 0.3(|Q_{\text{max}}| - |Q_{\text{mean}}|) \]

Mean = zonal mean and Max = zonal maximum \(ZN = \) Zhu and Newell (1998)

- Pineapple Express
 - 850 mb Wind Speed \(\geq \) 10 m/s
 - 270° > Wind Direction > 180°
 - \(\frac{DY}{DX} \geq 2 \) (minimum DY = 200km)

- UK Storms
 - 850 mb Wind Speed \(\geq \) 25 m/s
 - 360° > Wind Direction > 180°
 - \(\frac{DY}{DX} \geq 2 \) (minimum DY = 200km)

- France/Iberian Peninsula
 - 850 mb Wind Speed \(\geq \) 15 m/s
 - 360° > Wind Direction > 180°
 - \(\frac{DY}{DX} \geq 2 \) (minimum DY = 200km)
Summary of High Res Ocean

- Improvements with resolution
 - Atmosphere - TCs, Extreme precip, eastern boundary SST
 - Ocean – eddies, western boundary SST, small scale air-sea interaction
 - ENSO

- Stays same with resolution
 - Southern ocean wind bias
 - Subsurface warming

- Gets worse with high resolution
 - ITCZ too strong

- Caveat: results apply to CESM.
Tropical Cyclone (TC) Tracks

Observations

IBTRACS

0.25° atm/lnd – 0.1° ocn/sea ice

CESM-H

Small et al., 2014 (JAMES)
Eddy Kinetic Energy
(500mb)

Units = m²/s²

Future

Present Day

0.25° atmos-only

Courtesy Rich Neale