
Final Report
Enabling Science at the Petascale: From Binary Systems and Stellar Core

Collapse To Gamma-Ray Bursts

Peter Diener1,2, Frank Löffler1, Jian Tao1, and Steven R. Brandt1,3

1 Center for Computation and Technology,
Louisiana State University, Baton Rouge, LA 70803, USA

2 Department of Physics and Astronomy,
Louisiana State University, Baton Rouge, LA 70803, USA and

3 Division of Computer Science and Engineering,
Louisiana State University, Baton Rouge, LA 70803, USA

Understanding the physics of a Gamma-Ray Burst (GRB) demands truly petascale multi-
physics simulations on the largest and most modern High Performance Computing (HPC)
systems. To take full advantage of such systems extreme requirements are placed on the
computational infrastructure on which such codes are based. In this report we describe the
work within the Cactus framework to enable such demanding simulations on Blue Waters.

I. INTRODUCTION

The overall topic of our PRAC project is to perform full 3D evolutions of core-collapse su-
pernovae and of hyper-massive magnetized neutron star remnants of neutron star mergers. Such
simulations require evolution of the spacetime itself (as described by Einstein’s theory of general
relativity), fully general relativistic magnetohydrodynamics and neutrino transport. We base our
code on the Cactus [1, 3] computational framework in order to take advantage of the interoperabil-
ity of modules. For example the spacetime evolution code developed originally for binary black
hole simulations could be coupled fairly straightforwardly to a more recently developed magneto-
hydrodynamics module. In addition Cactus provides advanced Adaptive Mesh Refinement (AMR)
and multi-patch capabilities (through Carpet [2, 5, 6]) that are crucial for such simulations.

However, we also realized that there where several improvements that could be made to the
Cactus/Carpet infrastructure in order to improve performance and scalability of the code. The first
two (as detailed in section II) regards Carpet directly while the last one could enable the use of the
GPU nodes on Blue Waters. In this report on the work done during the Blue Waters PRAC sub-
award we will first describe the challenges we faced (section II), then the work we did to overcome
the challenges (section III) and show some results of the improvements (section IV). Finally in
section V we will comment on the future directions for further improvements.

II. CODE CHALLENGES

Our simulations are based on Cactus: a framework for solving partial differential equations
(PDEs) on a computational domain using a combination of adaptive mesh refinement (AMR)
and multi-patch techniques with the computational domain decomposed among MPI processes.
In Cactus, the details of the AMR and multi-patch algorithm (processor decomposition, memory
allocation and data communications) is performed by Carpet.

Based on numerous performance profiling experiments we identified three areas where we ex-
pected that modifications to data structures and algorithms could lead to overall performance and

2

scalability improvements. In this section we briefly describe the existing data structures and al-
gorithms and their short comings. In section III we will then describe the implemented changes,
improvements and additions to our code base and in section IV we will show some results of the
improvements.

A. Regridding data structures

Whenever the grid structure needs to change (as dictated by the physics), the grid has to be
redistributed among the MPI processes, data copied when necessary and the new communication
schedule determined. Thus, one of the most prominent challenges we are facing at scale is managing
the grid structure and its domain decomposition. The number of objects that need to be tracked
grows linearly with the number of MPI processes used, while their possible interactions (which
region needs to exchange information with which other region) grows quadratically. The goal is to
achieve this with at most linear cost, leading to a constant time if parallelized over all processes.
With the current data structures, this cost, though inconsequential if using up to about 1,000
MPI processes, begins to dominate the regridding time (i.e. the time required to adapt the grid
structure and re-balance the domain decomposition) for larger numbers of MPI processes. These
issues are due to the existing data structures for storing this information and the accompanying
order n2 algorithms.

B. Load balancing algorithm

In addition to the inefficient data structures and algorithms for handling the decomposed domain
(see section II A) we have also observed significant deficiencies with the algorithm used to split the
grid structure among processors. In Carpet each refinement level is split among all MPI processes.
Each refinement level can consist of multiple maps that potentially can have very different sizes.
The current algorithm has two main problems. Firstly, for the case of splitting n maps (each map
has the shape of a rectangular box) on P processes, each map is assigned an integer number of
processors Pi in such a way that P1 + P2 + . . . + Pn = P and Pi/P ≈ Ni/N where Ni is the
number of grid-points on each map and N1 + N2 + . . . + Nn = N . In most cases this leads to
some load imbalance. Secondly, splitting each map ni, across the assigned processors pi is done
using a recursive algorithm where at each recursion level the box is split in two along the longest
dimension and each new box assigned an integer number of processes chosen in such a way that
the load imbalance between the two boxes are minimized. This continues until each box is assigned
1 MPI process. Using this algorithm it can happen that a seemingly good choice for a split at an
early recursion level can lead to very large imbalances at a later level, whereas a slightly worse
choice at an early level would allow for a much better split at a later level. In some cases (at large
MPI process counts) load imbalances up to 20% has been seen, leading to some processors being
idle 1/5 of the runtime.

C. CaKernel

As graphics processing units (GPUs) become more and more prominent on high performance
computing (HPC) systems, we started adding Cactus support for GPU programming with the
CaKernel project. GPU programming is complicated by the fact that the programmer has to
explicitly handle the copying of data between the CPU and GPU and launching computational
kernels on the GPU. The main idea behind the project is to take advantage of the modularity of

3

(a) L-shaped region (b) x-derivative of this region (c) xy-derivative of this region

FIG. 1: An L-shaped region and its derivative. The xy-derivative consists only of the “key
points” of the shape

.

Cactus to hide this complexity as much as possible. Therefore, in the CaKernel project, we have
created a Cactus-aware GPU programming infrastructure allows Cactus, at runtime, to keep track
of which variables are stored on the GPU and which are stored on the CPU as well as to control
when data needs to be transferred. This provides a depth of awareness about data placement that
goes beyond what is possible to describe using simple annotations such as those available e.g. by
OpenACC. Additionally, the construction of the actual computational kernels have been simplified
through the use of Kranc’s automatic code generation feature that takes advantage of optimized
macro templates for stencil operations. The goal of this part of the project was to make CaKernel
robust enough for inclusion into our production simulation.

III. CODE IMPROVEMENTS

In this section we in turn describe describe how we addressed each of the challenges described
in section II: 1) improvements to the data structures for regridding in Carpet, 2) an improved load
balancing algorithm and 3) the development of abstractions in the Cactus framework (CaKernel)
to enable automatic code generation for GPUs.

A. Regridding data structures

In order to improve on the performance and scaling of the regridding data structures and algo-
rithms we implemented completely new data structures and algorithms based on storing discrete
derivatives of bounding box sets. This is a convenient way of storing bonding box sets for re-
gions of arbitrary shape defined on a uniform grid and is illustrated in figure 1. Here we show, as
an example, an L-shaped region and its x- and xy-derivatives. The main idea is that a discrete
derivative reduces the number of elements needed to describe the region. As can be seen from
the figure an L-shaped region in 2 dimensions can be described by just 6 points, regardless of how
many points are in the set. The full set can be reconstructed from the derivative using the unique
anti-derivative. When additionally the derivative bounding box sets are stored in a tree structure,
all set operations needed can be implemented with log-linear cost. For more details see [4].

4

B. Load balancing algorithm

The improvements to the load balancing algorithm were two-fold. Firstly, we overcame the
limitation that maps had to be assigned an integer number of MPI processes. That is, we now
allow an MPI process to be assigned to handle pieces of 2 different maps. This allows us to better
handle the cases of multiple patches of different sizes as well as different refinement regions (on the
same refinement level) of different sizes. As an example consider the case of 3 patches, where 2
patches (patches 1 and 2) are the same size and the first patch (patch 0) is twice the size. Splitting
this on 3 processors would before lead to one processor having twice as many grid points as the
others. In the new scheme processor 0 would get 2/3 of patch 0, processor 1 would get 1/3 of patch
0 and 2/3 of patch 1 while processor 2 would get 1/3 of patch 1 and all of patch 2.

Secondly we modified the recursive load balance algorithm. The new algorithm is similar to
the existing one in that, when splitting a rectangular region with N grid points on M processors,
it splits a region in the longest direction first into 2 regions; the first region with N1 points gets
assigned M1 processors and the second with N2 = N −N1 gets assigned M2 = M −M1 processors.
Here N1, M1, N2 and M2 are chosen such that the numbers of grid points per processor in each
region (N1/M1 and N2/M2) are as close to each other as possible. Then each of those regions are
recursively split into 2 regions again, and this continues until M regions have been created that are
each associated with a single processor. However, in order to avoid the case of a choice made at an
early recursion level leads to very bad choices at a later lever, the new algorithm explores several
different options at each level, evaluating the final load imbalance for the different options once
the full decomposition tree have been constructed, and keeping only the best. It is not feasible
to explore all options, as this would lead to an exponential number of total options. Instead we
explore a parameter adjustable number of options at early recursion levels and a decreasing number
at later recursion levels.

C. CaKernel

In this project we have focused mainly on improving the interoperability of Cactus and CaKernel
in order to more easily allow developers to implement new (or adapt existing) functionality to
make use of GPUs. Cactus already provides the following grid abstractions (common in high level
programming frameworks for parallel block-structured HPC applications):

• The Grid Hierarchy (GH) represents the distributed, adaptive hierarchy of grids. The ab-
straction enables application developers to create, operate and destroy hierarchical grid struc-
tures. The regridding and partitioning of a grid structure are done automatically whenever
necessary. In Cactus, grid operations are handled by a driver thorn which is a special module
in Cactus.

• A Grid Function (GF) is a distributed data structure that represents the variables in an
application. Storage, synchronization, arithmetic, and reduction operations are implemented
for the GF by standard thorns. The application developers are responsible for providing
proper routines for initialization, boundary updates, etc.

• The Grid Geometry (GG) represents the coordinates, bounding boxes, and bounding box
lists of the computational domain. Operations on the GG, such as union, intersection, refine,
and coarsen are usually implemented in a driver thorn as well.

In addition to this CaKernel now provides the following kernel abstractions:

5

• A CaKernel Descriptor describes one or more numerical kernels, dependencies, such as grid
functions and parameters required by the kernel, and grid point relations with its neighbors;
the information provided in the descriptor is then used to generate a kernel frame (macros)
that performs automatic data fetching, caching and synchronization with the host;

• A Numerical Kernel uses kernel-specific auto-generated macros; the function may be gener-
ated via other packages (such as Kranc), and operates point-wise;

• The CaKernel Scheduler schedules CaKernel launches and other CaKernel functions in exactly
the same way as other Cactus functions; data dependencies are evaluated and an optimal
strategy for transferring data and performing computation is selected automatically.

To couple together the grid and kernel abstractions we added a Catus component (thorn), Ac-
celerator, that tracks which parts of what grid functions are valid where, and which triggers the
necessary host–device copy operations that are provided by other, architecture-specific thorns. By
also modifying Kranc to generate CaKernel code, we were then able to use our Kranc script for the
BSSN spacetime evolution module McLachlan to generate versions for both the CPU and GPU.
Thus we are now able to hide the complexities of writing GPU kernels and scheduling host to device
memory transfers from the user who can focus on providing the equations in high level tensorial
form.

IV. RESULTS

In this section we present some results showing the performance improvements and new capa-
bilities for each of the three sub projects.

A. Regridding data structures

We have tested the effect of the new regridding data structures on the scaling of Carpet on
various super computers. The results are shown in figure 2. As can be seen from the pink (finely
dotted) and blue (dotted) curves changing from the old to the new data structures resulted in a
dramatic improvement of the scalability of the code. We see a clear deterioration of the scaling
when running on more than 16k cores on Blue Waters. This is most likely due to the serial nature
of the algorithms.

B. Load balancing algorithm

As all MPI processes have to wait until the slowest one finishes (i.e. the MPI process with the
most grid-point), we calculate the load imbalance L defined as

L =
max(ni) − nideal

nideal
. (4.1)

Here max(ni) is the maximum number of grid-points that have been assigned to any of the MPI
processes and nideal = N/M is the ideal number of grid-points that should be assigned to an MPI
process. Note, that we currently assume that the computational cost of all grid-points are the
same. For ideal load balance, max(ni) = nideal and L = 0. In figure 3 we plot L (in percent) as
a function of the number of MPI processes for the case of a cubical box with 5123 grid-points for
the old (red) and new (green) algorithms. It is clear that the new algorithm consistently yields

6

 0

 10

 20

 30

 40

 50

 16 64 256 1024 4096 16384 65536

T
im

e
 p

e
r

g
ri
d

 p
o

in
t

R
H

S
 [

µ
s
]

cores

Einstein Toolkit benchmark: TOV (9 levels)

Blue Waters
Hopper

Stampede
Stampede (bboxset1)

FIG. 2: Weak scaling for a simulation of a TOV star using 9 levels of refinement on Blue Waters,
Hopper and Stampede. The performance is given in the time per grid point RHS evaluation (in
µs). Perfect scaling would result in a horizontal line. The pink curve for Stampede is for the

original regridding data structure (bboxset1), while the new implementation was used for the red
(Blue Waters) and blue (Stampede) curves.

smaller load imbalances and in the cases where a perfect load imbalance is possible (2, 4, 8, 16, 32,
64, 128, 256 and 512 MPI processes) it finds it, whereas the old algorithm fails to find the optimial
decomposition in several cases. The difference in performance can be even greater in the case of
multi-patch runs, where we are better able to handle patches of different sizes.

C. CaKernel

With the improvements and additions to CaKernel we were able to run a demonstration binary
black hole simulation where the evolution was done on the GPU and the MPI communication and
several analysis routines where done on the CPU. This was done on a 3D uniform Cartesian grid.
This demonstrates that the infrastructure are able to keep track of when data need to be copied
from host to device and back again and that the integration with the analysis modules running on
the CPU were seamless.

7

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600

Lo
ad

 im
ba

la
nc

e
(%

)

MPI procs

Old algorithm
New algorithm

FIG. 3: A comparison of the load imbalance between the old and new algorithm for a 5123 box
split among different numbers of MPI processes up to 512. A perfect split is possible for 2, 4, 8,
16, 32, 64, 128, 256 and 512 MPI proceses. The new algorithm recovers the perfect split for all

these cases and in general achieves significantly better load imbalance for most processor counts.

8

FIG. 4: The visualization of a binary
black hole system.

Percentage of
Timer total evolution time

Inter-process synchronization 39%

RHS advection 13%

RHS evaluations 12%

Wait 11%

RHS derivatives 6%

Compute Psi4 5%

Multipolar decomposition 3%

File output 3%

BH tracking 3%

Time integrator data copy 2%

Horizon search 2%

Boundary condition 1%

TABLE I: The timer breakdown for the binary black
hole simulation. Routines in bold face (37%) are
executed on the GPU.

In figure 4 we show the numerical simulation domain. On the x − y plane we project the
Ψ4 variable which represents gravitational waves. The black hole trajectories are shown as black
curves near the center of the grid; they end when the black holes merge into a single black hole
located at the center. The sphere on which the multipolar decomposition of the gravitational
waves is performed is also shown. In the insets, we show (a) the time evolution of the (dominant)
` = 2,m = 2 mode of the gravitational radiation computed on the sphere at r = 4M , and (b) the
(highly distorted) shape of the common apparent horizon formed when the two individual black
holes merge.

Table I shows a break-down of the total run time of the BBH simulation. The routines labeled in
bold face run on the GPU. The times measured are averaged across all processes. The Wait timer
measures the time processes wait on each other before an inter-processor synchronization. This
encapsulates the variance across processes for the non-communicating routines. We see that the
inter-process synchronization is a significant portion (39%) of the total run time. One reason for
this is that the large number of ghost zones (5) needed for 8th order stencils require transmitting
a large amount of data.

V. FUTURE WORK

During the project we have made considerable progress in all three sub projects.
Of the three, the improvements to the bounding box data structure has had the most immediate

impact as they have been incorporated in both the development and release version of Carpet and
are used routinely in production runs.

The new load balancing algorithm, though promising, suffers from the drawback that it is
significantly more time consuming than the original. This is due to the fact that many more
different ways of splitting the domain have to be in investigated before the best option can be
chosen and in addition the algorithm is implemented serially. Thus if regridding happens too
frequently, the overhead of finding a good split can offset the advantages of having a better load
balance leading to longer run times. Therefore, though the algorithm has been implemented in
Carpet, the current recommendation is to only use it for fixed mesh refinement runs, where the

9

longer time initially spent decomposing the grid does not matter. After the project finished, we
have started looking at ways of parallelizing the algorithm using C++ 11 futures as a first step in
getting at least a shared memory parallel version.

Though we made good progress during the project, the CaKernel developments are not yet ready
for use in production mode. In a core collapse simulation the majority of the computational time is
spent in the magnetohydrodynamics and neutrino transfer rather than in the space time evolution.
Hence, limited benefits would result from using CaKernel for such simulations until Kranc versions
of the corresponding Cactus modules have been created. Also, we would like to refine the CaKernel
infrastructure to be able to automatically split and merge computational kernels to better use
the different memory systems on a GPU in order to obtain the best floating points performance
possible. This work is ongoing.

[1] Cactus computational toolkit home page, http://www.cactuscode.org/.
[2] Mesh refinement with Carpet, http://www.carpetcode.org/.
[3] Tom Goodale, Gabrielle Allen, Gerd Lanfermann, Joan Massó, Thomas Radke, Edward Seidel, and

John Shalf, The Cactus framework and toolkit: Design and applications., High Performance Computing
for Computational Science - VECPAR 2002, 5th International Conference, Porto, Portugal, June 26-28,
2002 (Berlin), Springer, 2003, pp. 197–227.

[4] Erik Schnetter, Performance and optimization abstractions for large scale heterogeneous systems in the
cactus/chemora framework, CoRR abs/1308.1343 (2013), URL http://arxiv.org/abs/1308.1343.

[5] Erik Schnetter, Peter Diener, Nils Dorband, and Manuel Tiglio, A multi-block infrastructure for three-
dimensional time-dependent numerical relativity, Class. Quantum Grav. 23 (2006), S553–S578, eprint
gr-qc/0602104, URL http://stacks.iop.org/CQG/23/S553.

[6] Erik Schnetter, Scott H. Hawley, and Ian Hawke, Evolutions in 3D numerical relativity using fixed mesh
refinement, Class. Quantum Grav. 21 (2004), no. 6, 1465–1488, eprint gr-qc/0310042.

