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Motivation: why we need to improve the
electric power grid.

Source: http://www.ornl.gov

Communication
Networks

Source: ROBERT GIROUX/ Time

© America Revealed

Source: mapoftheweek.blogspot.com

] W
Source: http://www.eia.gov

Fuel supply

Source: http://www.dnvkema.com

» Support for critical infrastructure:
* Communication networks and fuel and water supply systems
* Prevent blackouts
* Realize a robust efficient grid under increased renewable energy production



Scientific Motivation: better understand
large, complex interconnected systems.

Scientific Computing
* Distributed Algorithms
* Scalable with respect to size of :
* Network
* Data
* Asynchronous Setting
* Simulation of complex, dynamic systems

Challenge: coordinate control,
sensing, and optimization in a
decentralized way.

Estimation & Detection Optimization & Control

State Estimation Optimal Power Flow
Bad Data Detection

Economic Dispatch
Decision Making Under Uncertainty Demand Response
Line Outage Identification

Wide — Area Control



Improving power grid operations via High
Performance Computing

Power Grid Port £ Mid poland c
Control Room ortion 9 idwest olan urope
. . Power Grids
(California)
# vertices N 118 3375 9241
# edges 186 4161 16049

Blue Waters

Supercomputer g # generators 54 596 1445

(NCSA & UIUC) o o . .

- u\ , * Efficient matrix inversion for real-time
: = applications

* New sensing technology (PMUs) produces a lot
- of data

Il " * 30 samples/sec -> 2 million samples/day

' * For ~100 sensors, ~2*108 samples/day

6
Source: Franz Franchetti, CMU
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State Estimation & Distributed Algorithms

* Monitor the electric grid in real-time
e State Estimation task: Given noisy system
measurements, infer the state of the system. Central Coordinator

» Reference : [Schweppe 1970]

* Measurements consist of subset of:

* Power flows along transmission lines
(edges).

 Power injections and voltage at
vertices.

» State is the voltage (phase angle and
magnitude) at each vertex in the
network.

* Non-linear measurement model Node 2

* Distributed vs. centralized
* Advantages of distributed approaches:

* 1) avoid communication bottleneck

* 2) reduction in computation and memory
requirements per area.

Node 1 /57

v Node 3

————————>

<€----- » Hierarchical Communication Scheme
<——> Fully Distributed Communication Scheme



Mathematical Problem Statement

Goal: From noisy system measurements Z, determine state, & = [9 V] , at every
vertex in the power network.

Weighted non-linear least squares min f(CE) = (Z — h(:l:))TW(Z — h(ag))

optimization @x
Iterative solution using Newton’s pE+1) — (k) _ [VQf(w(k))]_1Vf(w(k))
method

Main challenge : Matrix inversion requires full, global knowledge of matrix entries. How to
calculate inverse in a fully distributed fashion?

Idea : use matrix splitting techniques (R. Varga)

In general, matrix splitting A = M 4+ N provides an iterative approach to solve the linear
system, Ax =y

xtl = M INxt* + M1y

The sequence {x'} converges to its limit x*as ¢ — oo if and only if the spectral radius of
the matrix M 1N is strictly less than 1.
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Matrix-Splitting for Distributed State Estimation

. Let AEVQf(ac(k)) =0 and E; =« Z | A

Djl,j;éz' :
ANEIN
(D +E)+ (E-E)

v w

M N

A

N

Proposition: Let M =D +E and N=E — E.
Then, for @ > £, p(M™'N) < 1.




Utilizing Sparsity to Enable Distribution

* M is diagonal and easy to invert distributedly. Each vertex needs only its local
information.

* Power systems follow Kirchoff’s current & voltage laws =2 N has a distinct sparsity
pattern related to the power network topology.

Voltage measurement Power flow Power injection
0,and V, measurement P_, measurement P,

* This sparsity in N is what allows for distribution with limited communication.

* At most need to communicate 2-hop neighbor information. .



Distributed Newton Method for DSE

Algorithm 1: Distributed Newton Method for State Estimation

Initialization: V 1 < a < n, z\) = {9((10), VG(O)} with

9" =0 and V.°) = 1.
for a :=1 to n do
for k& := 0 to K (Newton/Outer Loop) do

Aa:g,()’k) =0

Calculate A:cff“’k) with matrix-splitting
iterative scheme.
Communication with neighbors.
end
a:((lkﬂ) = :c’(‘; - A:c((lk’T)
Communication with neighbors.

end

end

for t := 0 to T' (Matrix-Splitting/Inner Loop) do

%

* Each vertex is assighed an MPI process.

’ Power injection
measurement at
vertex b

* MPI Graph Communicator (MPI_Graph_create) used to mimic structure of power

network.

13
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Distributed Newton Method for DSE

Algorithm 1: Distributed Newton Method for State Estimation

Initialization: V 1 < a < n, z\) = {9((10), VG(O)} with

6 =0 and V% = 1.
for a :=1 to n do
for k& := 0 to K (Newton/Outer Loop) do

Aa:((zo’k') =0

Calculate A:cff“’k) with matrix-splitting
iterative scheme.
Communication with neighbors.
end
:c((lkﬂ) = :c’(‘; - A:c((lk’T)
Communication with neighbors.

end
end

for t := 0 to T' (Matrix-Splitting/Inner Loop) do

%

* Each vertex is assighed an MPI process.

’ Power injection
measurement at
vertex b

{0,, V,}

* MPI Graph Communicator (MPI_Graph_create) used to mimic structure of power

network.
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Distributed Newton Method for DSE

Algorithm 1: Distributed Newton Method for State Estimation

Initialization: V1 < a < n, :cflo) = {9((10), VG(O)} with ’ Power injection
0! = 0 and V¥ = 1. measurement at
for a ;=1 to n do vertex b

for k& := 0 to K (Newton/Outer Loop) do

Az =0
for t := 0 to T' (Matrix-Splitting/Inner Loop) do

Calculate A:cff“’k) with matrix-splitting
iterative scheme.

Communication with neighbors.
end

a:((lkﬂ) = :c’(‘; - A:c((lk’T)
Communication with neighbors.
end
end

* Each vertex is assighed an MPI process.
* MPI Graph Communicator (MPI_Graph_create) used to mimic structure of power

network.
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Distributed Newton Method for DSE

Algorithm 1: Distributed Newton Method for State Estimation

Initialization: V 1 < a < n, z\) = {9((10), VG(O)} with

6 =0 and V% = 1.
for a :=1 to n do
for k& := 0 to K (Newton/Outer Loop) do

Aa:((zo’k') =0

Calculate A:cff“’k) with matrix-splitting
iterative scheme.
Communication with neighbors.
end
:c((lkﬂ) = :c’(‘; - A:c((lk’T)
Communication with neighbors.

end
end

for t := 0 to T' (Matrix-Splitting/Inner Loop) do

%

* Each vertex is assighed an MPI process.

’ Power injection
measurement at
vertex b

{6, V,}

* MPI Graph Communicator (MPI_Graph_create) used to mimic structure of power

network.
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Results: Accuracy Performance |
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e Each uses 15 matrix-splitting iterations. Number of Newton iterations needed
for convergence depends on power network size.



Results: Accuracy Performance Il

3374 Vertex Network
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* Tradeoff between convergence and runtime for different number of matrix-splitting
iterations. 19



Results: Accuracy Performance Il

Matrix—Splitting Convergence: 3374 Vertex Network
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* Convergence of matrix-splitting iterative scheme varies between different vertices in
the power network. 20



Results: Timing Performance |

Runtime (s)
18 —

I \isc. Setup

[ ] Matrix-Splitting Communication
16 Matrix—Splitting Computation
I Outer—Loop (Newton Update)

14 —

12 —

10 —

0 |
14 118 1354 3374
Network Size
e Using same number of iterations (15 matrix-splitting, 40 Newton), compare how
computation and communication scale with power network size.



Results: Timing Performance |l

Runtime (s)

1.6

mEEs
1.4 — I I

B Visc. Setup
[ | Matrix-Splitting Communication

[ ]Matrix—Splitting Computation
I Outer-Loop (Newton Update)
- rrns
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Process or Vertex Number

* For 14-vertex power network, study how time spent on communication and
computation varies among different vertices. 22
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Conclusions

e Use of Blue Waters
* Allows testing of algorithms on large-scale, realistic systems.

e Each vertex in the power grid is assigned an MPI process.

Ml
V. E
e 3
RS T W
'
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Conclusions

* Main result
* Developed a new fully distributed state estimation algorithm using matrix-
splitting techniques.
* Requires limited sharing of information between neighboring vertices.
e Saves memory resources.
* Implementation available in C++ using MPI.
e Future Work
« Develop new local pre-processing and asynchronous communication
schemes.
* Improve the robustness of state estimation with respect to imperfect
communication as well as reduce network traffic.

e Thank you to the Blue Waters Graduate Fellowship Program and NSF for
supporting this work, as well as to the NCSA staff and point of contact Craig
Steffen, for their help in working with Blue Waters.
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Kirchoff’s Voltage and Current Law

Kirchoff Current Law (KCL): conservation of charge

Sum of all currents leaving and
enteringanode1=0

Kirchoff Voltage Law (KVL): conservation of energy

Total voltage around a closed loop 2V =0

28




Measurement Model

_~

1) If 2z = Py, then

hi(x) =hpap)(ba; Va, 0, Vs)
e _ VaVi (Gab cos(fa — Op) + Bapsin(fa — Ob))

2) If 2 = Qab, then

hi(z) =hq(a,b)(0as Va, b, Vp)
& — VoVi (Gab sin(6a — 0) — Bas cos(0a — 05))
- (Btszt;) + Bab)Va‘,za (2)

where B3 is the shunt susceptance.
3) If 2z = P,, then

hi(x) =ha, p(0as Va, {06} bena s { Vo }oens.)

def Z VoV (Gab cos(f, — 0p) + Bgpsin(f, — gb))-
beN,

(3)

Reference: [Wood &
Wollenberg]

B., : susceptance of
transmission line b/t vertices
aandb

G,, : conductance of
transmission line b/t vertices
aandb

29



Measurement Model

4) If 2. = Q,, then

hk(w) =ha,Q(gaa Vaa {Hb}bGNa ’ {Vb}bGNa)

def Z VoV (Gab sin(fa — 6p)
beEN

— Bgp cos(f, — 9b))- 4)
5) If 2 = @, then
def
hie(z) = ho.a(0a) < ba. (5)
6) If zp. = Va, then
hi(z) = hy.a(Va) & V. (6)
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