
PROCESSING TRILLION EDGE GRAPHS IN
DISTRIBUTED MEMORY

George M. Slota, The Pennsylvania State University
2014-2015 Graduate Fellow

RESEARCH SUMMARY

Graphs are a mathematical construct representing
discrete entities or objects (vertices) and some
form of link or interaction between them (edges).
Human social interactions, the Internet, and the
neural structures of the brain are just a subset of
modern, real-world and extreme-scale datasets that
are representable as graphs. The irregularity, scale,
and complexity of such graphs present a high level of
challenge for domain experts to use computational
resources to extract useful insight into these graphs.
As a result, many graph processing frameworks have
recently been introduced with the goal to simplify
the analysis of real-world graphs on commodity
hardware. However, these popular frameworks lack
scalability to modern massive-scale datasets, require
specialized hardware to run, or simply cannot out-
perform optimal serial code [1]. Our previous work
focused on overcoming these barriers from the
ground up, developing general approaches for graph
analytic optimization that are highly performant
from a single node to a small cluster to a large and
powerful system such as Blue Waters. There has
been other prior research aimed at abstracting graph
algorithms themselves, including as linear algebraic
operations [2] or into a nested loop structure [3]. As
such, our ongoing work has identified several other
key data storage and communication abstractions
that allow the straightforward implementation of
broad classes of graph analytics. These findings will
enable domain scientists to study graphs at a larger

scale and with more complex algorithms than has
previously been possible.

Our current work considers graph algorithms
running on distributed systems such as Blue Waters
and processing on an in-memory distributed graph
representation. Here, each MPI task owns only
some subset of a large graph, iteratively performing
computation on its subset and communicating
the results to neighboring tasks. By analyzing the
computation and communication patterns typical
of a number of graph algorithms, we noticed several
generalizable similarities. There are two primary
ways in which algorithm-specific data is updated.
Either these updates are pulled by a given vertex
to update some data associated with this vertex or
these updates are pushed by a given vertex for its
neighbors to use while computing updates to their
data. In addition to this push/pull pattern, there is
also a difference in the sizes of the update and work
sets, where these sets can be composed of vertices for
each iteration. The sets are either variable or fixed,
depending on the algorithm. Overall, we identified
four distinct processing patterns into which many
graph algorithms fall (push-variable, push-fixed,
pull-variable, pull-fixed) and created optimized
outlines for these patterns. Using these patterns, we
then implemented several common graph analytic
algorithms. We observe high performance of our
implementations, despite the generalized approach.
Our implementations are noted to scale to graphs
of over a trillion edges and over ten billion vertices
while running on up to 8,192 nodes and 131,000

cores of Blue Waters. We can end-to-end process
graphs of this scale in mere minutes on Blue Waters,
including I/O, preprocessing, and output. Ongoing
work aims to simplify our approach and methods
further to enable its use among domain experts and
graph analysts.

WHY BLUE WATERS
Access to the Blue Waters systems greatly benefited
this research for several reasons. The high
performance I/O filesystem greatly accelerated
end-to-end processing times for experiments on our
large test datasets. We often observed over 50GB/s
read time across a moderate number of nodes, even
during periods of high concurrent usage, which
enabled test data of terabytes in size to be read in
seconds. This minimized node-hour waste when
running high numbers of parametric tests with quick
turnaround times. Blue Waters also represents the
state-of-the-art in overall intra-node and inter-node
communication and computational performance,
which allows it to serve as a good representable
testbed for generalizing our methods to be run on
other current and future systems.

PUBLICATIONS AND DATA SETS
Slota, G. M., S. Rajamanickam, and K. Madduri, A

Case Study of Complex Graph Analysis in Distributed
Memeory: Implementation and Optimization.
Proceedings of the 30th IEEE International Parallel
and Distributed Processing Symposium (IPDPS16),
(IEEE, Chicago, Illinois, May 23-27, 2016).

Slota, G. M., and K. Madduri, Parallel Color-
coding. Parallel Computing, 47 (2015), pp. 51-69.

Slota, G. M., S. Rajamanickam, and K. Madduri,
High Performance Graph Analytics on Manycore
Processors. Proceedings of the 29th IEEE International
Parallel and Distributed Processing Symposium
(IPDPS15), (IEEE, Hyderabad, India, May 25-29,
2015).

George Slota accepted a temporary staff position at Sandia National Labs upon
graduation in May 2016. In Fall 2016 he started as an assistant professor in the
Computer Science Department at Rensselaer Polytechnic Institute.

“The Blue Waters program has helped me achieve my career goals,” he says,
“by allowing me to focus on my research during my Ph.D. as well as enabling my
access to a large-scale system that my research required.”

	 2016BLUE WATERS ANNUAL REPORT

282 283

