
PROCESSING TRILLION EDGE GRAPHS IN 
DISTRIBUTED MEMORY

George M. Slota, The Pennsylvania State University
2014-2015 Graduate Fellow

RESEARCH SUMMARY 

Graphs are a mathematical construct representing 
discrete entities or objects (vertices) and some 
form of link or interaction between them (edges). 
Human social interactions, the Internet, and the 
neural structures of the brain are just a subset of 
modern, real-world and extreme-scale datasets that 
are representable as graphs. The irregularity, scale, 
and complexity of such graphs present a high level of 
challenge for domain experts to use computational 
resources to extract useful insight into these graphs. 
As a result, many graph processing frameworks have 
recently been introduced with the goal to simplify 
the analysis of real-world graphs on commodity 
hardware. However, these popular frameworks lack 
scalability to modern massive-scale datasets, require 
specialized hardware to run, or simply cannot out-
perform optimal serial code [1]. Our previous work 
focused on overcoming these barriers from the 
ground up, developing general approaches for graph 
analytic optimization that are highly performant 
from a single node to a small cluster to a large and 
powerful system such as Blue Waters. There has 
been other prior research aimed at abstracting graph 
algorithms themselves, including as linear algebraic 
operations [2] or into a nested loop structure [3]. As 
such, our ongoing work has identified several other 
key data storage and communication abstractions 
that allow the straightforward implementation of 
broad classes of graph analytics. These findings will 
enable domain scientists to study graphs at a larger 

scale and with more complex algorithms than has 
previously been possible.

Our current work considers graph algorithms 
running on distributed systems such as Blue Waters 
and processing on an in-memory distributed graph 
representation. Here, each MPI task owns only 
some subset of a large graph, iteratively performing 
computation on its subset and communicating 
the results to neighboring tasks. By analyzing the 
computation and communication patterns typical 
of a number of graph algorithms, we noticed several 
generalizable similarities. There are two primary 
ways in which algorithm-specific data is updated. 
Either these updates are pulled by a given vertex 
to update some data associated with this vertex or 
these updates are pushed by a given vertex for its 
neighbors to use while computing updates to their 
data. In addition to this push/pull pattern, there is 
also a difference in the sizes of the update and work 
sets, where these sets can be composed of vertices for 
each iteration. The sets are either variable or fixed, 
depending on the algorithm.  Overall, we identified 
four distinct processing patterns into which many 
graph algorithms fall (push-variable, push-fixed, 
pull-variable, pull-fixed) and created optimized 
outlines for these patterns. Using these patterns, we 
then implemented several common graph analytic 
algorithms. We observe high performance of our 
implementations, despite the generalized approach. 
Our implementations are noted to scale to graphs 
of over a trillion edges and over ten billion vertices 
while running on up to 8,192 nodes and 131,000 

cores of Blue Waters. We can end-to-end process 
graphs of this scale in mere minutes on Blue Waters, 
including I/O, preprocessing, and output. Ongoing 
work aims to simplify our approach and methods 
further to enable its use among domain experts and 
graph analysts.

WHY BLUE WATERS
Access to the Blue Waters systems greatly benefited 
this research for several reasons. The high 
performance I/O filesystem greatly accelerated 
end-to-end processing times for experiments on our 
large test datasets. We often observed over 50GB/s 
read time across a moderate number of nodes, even 
during periods of high concurrent usage, which 
enabled test data of terabytes in size to be read in 
seconds. This minimized node-hour waste when 
running high numbers of parametric tests with quick 
turnaround times. Blue Waters also represents the 
state-of-the-art in overall intra-node and inter-node 
communication and computational performance, 
which allows it to serve as a good representable 
testbed for generalizing our methods to be run on 
other current and future systems.
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“The Blue Waters program has helped me achieve my career goals,” he says, 
“by allowing me to focus on my research during my Ph.D. as well as enabling my 
access to a large-scale system that my research required.”
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