
they are part of many cutting-edge projects with 
high socio-economic impact. Using our methods, 
scientists and engineers will be able to solve 
Assignment Problems containing hundreds of 
thousands of vertices within a matter of minutes, 
leading to transformative discoveries. The parallel 
programming library developed during this 
research will provide a platform for solving large-
scale Assignment Problems and comparing the 
performance of different algorithms, thus ensuring 
continued advancement of science and engineering.
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FIGURE 3: Scalability results for 200 iterations of 

parallel Lagrangian dual ascent on instances from QAPLIB.
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EXECUTIVE SUMMARY

Sparse matrix computations are a common 
element in a range of high-performance computing 
applications and often dominate computation, 
particularly at scale. The goal of this project is 
to develop numerical schemes that limit parallel 
communication in sparse matrix methods, leading 
to efficient and scalable sparse operations without 
loss of accuracy.

Iterative methods for approximating the solution 
to sparse linear systems rely on sparse matrix-vector 
multiplication as a key computational kernel. Yet 
communication costs drive the complexity of these 
operations. The focus of this project is on algorithm 
design to alleviate communication costs at scale.  

This project has contributed two key developments: 
the ability to sparsify the matrix operations to limit 
communication and the method of redundant 
computation to localize computation, thus limiting 
communication distance and time.

INTRODUCTION
Sparse matrix problems of the form Ax=b are 
common in many large-scale simulations. In this 
project, multigrid methods are considered as a 
method for the iterative approximation for this 
problem. Multigrid methods construct a series or 
hierarchy of smaller sparse matrices that are used 
to form an iterative refinement of the solution. 
This leads to fewer floating-point operations in 
the solution to Ax=b, but potentially very high 
communication costs and memory movement 
relative to the amount data in the computation.

A key kernel in this process is that of sparse matrix-
vector multiplication w ‹– A v. Here, the sparsity 
pattern—or the location of non-zero entries in the 
matrix—governs the computational expense of the 
operation. A common bottleneck in the computation 
is the scenario where the sparse matrix resides on a 
high number of cores with a low number of matrix 
elements per core (Fig. 1).

Achieving efficiency in these computations is 
critical as many applications rely on these sparse 

operations throughout the simulation, leading to 
significant resource usage.

METHODS & RESULTS
Two methods were explored to address the 
communication demands in the problem.  First, a 
method of sparsification whereby specific entries in 
the matrix are eliminated from the computation is 
explored. In multigrid, the matrices in the hierarchy 
are successively smaller, but relatively more dense, 
leading to wider communication patterns. A method 
is designed in [1] that avoids communicating work 
associated with weak or low-influence matrix 
entries in the problem. This leads to a notable 
speed-up of 2x, particularly at large core counts 
(Fig. 2). In addition, the topology of the system is 
also incorporated in the communication of sparse 
entries, preferring local on-node communication in 
the algorithm. This leads to a significant reduction 
in total message traffic, thereby reducing system 
contention and total simulation time (Fig. 3).

Ultimately, sparse matrices in the multigrid 
hierarchy are too small to reside on the full set of 
processing elements. Therefore a redistribution of 
data is needed to map matrix data to a subset of 
processors.  This comes at a cost, which was explored 
in this project. By performing a redistribution of data 
based on a performance model, nearly scalable results 
can be achieved. As an example, for p processors, 
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EXECUTIVE SUMMARY

Electricity theft is a billion-dollar problem faced 
by utilities around the world and current measures 
are ineffective against sophisticated theft attacks 
that compromise the integrity of smart meter 
communications. We are devising algorithms that 
detect such theft attacks, and that are based on 
mathematical techniques in statistics and machine 

learning. The goal is to detect and mitigate theft 
by identifying anomalies in consumption patterns 
of electricity consumers. We used Blue Waters to 
evaluate the effectiveness of the autoregressive 
integrated moving average (ARIMA)-based approach 
to detect simulated anomalies in smart meter data. 
The best parameters for these algorithms need to 
be found using scanning techniques, and they need 

to account for a wide range of attack parameters 
that produce anomalies. Our evaluation is based 
on a large dataset obtained from a real smart meter 
deployment.

INTRODUCTION
Bloomberg News reported that electricity theft in 
India contributes to blackouts and costs $17 billion in 
lost revenue annually. According to the World Bank, 
electricity theft contributes to a loss in electricity 
delivery of over 25% of generated supply in India, 
16% in Brazil, 6% in China and the U.S., and 5% in 
Australia. Theft in these countries is almost always 
achieved by tapping into electric distribution lines. 
To detect these thefts, utility companies such as BC 
Hydro have been convincing consumers to install 
smart meters. However, there has been some push-
back as consumers have begun to realize that smart 
meters are vulnerable to cyber intrusions. In 2010, 
the Cyber Intelligence Section of the FBI reported 
that smart meter consumptions were being under-
reported in Puerto Rico, leading to annual losses 
for the utility estimated at $400 million. In 2014, 
BBC News reported that smart meters in Spain were 
hacked to cut power bills. Given that smart meters 
can be compromised, the roll-out efforts of utilities 
such as BC Hydro may only increase the attack 
surface for cyber intrusion-based theft methods. 

We identified seven classes of electricity attacks, 
some of which distribute the monetary loss to 
consumers, at no loss to the utility. Therefore, this 
problem is not only important to utilities, but also 
consumers around the world.

METHODS & RESULTS
The methods in this project are detailed in our 
earlier work [2], where we simulated electricity theft 
attacks on 500 consumers and tested our detector’s 
false positive and false negative rates on them. The 
detector fitted an ARIMA model to the consumption 
data time series and then flagged outliers using a 
confidence interval created from the model.

We used methods in [3] to fit the ARIMA time 
series but learned from the larger simulation on Blue 
Waters that these methods do not scale well and are 
very sensitive to outliers. Also, we found unexpected 
results that used Python packages built by third 
parties. Upon further investigation, we identified 
errors in the algorithms coded in those Python 

packages (specifically the statsmodels.tsa.arima_
model.ARIMA package). The algorithms simply do 
not implement ARIMA models correctly and use 
the differencing order term in the ARIMA model 
in a manner that is inconsistent with the theory. 

WHY BLUE WATERS
Our earlier work published in [2] was performed at 
a much smaller scale (500 consumers) on a regular 
server rack, consuming inordinate amounts of 
processing time. We wanted to perform evaluation 
studies of our detector at a larger scale (2900 
consumers). Also, we wanted to try out many 
parameters for our detector at that scale. Without 
Blue Waters, it would have taken years to complete 
these tasks.

NEXT GENERATION WORK
Our experience with Blue Waters helped us identify 
problems with third party software packages. We are 
redeveloping those packages ourselves and hope to 
complete them in time for the September 2016 call 
for proposals. With the correct algorithms, we hope 
to discover insights on our electricity theft detector 
from our use of Blue Waters.

it was observed that the standard approach to 
redistribution of data yielded a growth of p1.1 in 
simulation time, while a redistribution designed to 
limit communication yields around p0.17.  This is a 
signficant saving, particularly as p approaches one 
million cores.

WHY BLUE WATERS
Blue Waters was key to this work as it provided 
access to the fast Cray Gemini interconnect as 
well as to the large core count needed for accurate 
scalability studies. Sparse matrix algorithms need to 
take advantage of multiple aspects of the compute 
architecture, and Blue Waters allowed for the 
development of both on-node features and long-
distance communication decisions in the multigrid 
algorithm. As multigrid methods are expected to be 
a key solver technology on future systems, access to 
Blue Waters has been instrumental in advancing 
these methods.

NEXT GENERATION WORK
Increased concurrency will continue to challenge 
the scalability of sparse matrix computations. One 
goal is to capture the topology features of these 
systems more directly in the algorithms. This project 
provided several steps toward that goal. A future 
element of this work would be to add heterogeneous 
compute elements to the multigrid algorithm and 
to enhance the underlying performance models to 
effectively capture their use.

FIGURE 3: Effect of 

localized message 

communication on 

MPI messages.
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