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utilization

Nug18 10 9 514 16.75 0.916

Nug20 10 10 669 38.31 0.859

Nug22 12 12 969 56.63 0.931
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EXECUTIVE SUMMARY 

The goal of our project is to develop fast and 
scalable algorithms for solving large instances of 
Linear Assignment Problem (LAP) and Quadratic 
Assignment Problem (QAP) using Graphics 
Processing Units (GPUs). LAP is polynomial-time 
solvable with cubic worst-case complexity, while the 
QAP is strongly non-deterministic polynomial-time 
hard (NP-Hard). To solve a linearized model of the 
QAP using branch-and-bound, lower bounds must 
be calculated using the Lagrangian dual technique, 
in which a large number of LAPs must be solved 
efficiently. Additionally, in a branch-and-bound 
scheme, a large number of nodes must be explored 
to find a provable optimal solution. To this end, 
we have used Blue Waters to develop: (1) A GPU-
accelerated Hungarian algorithm for solving large 
LAPs in an efficient manner; (2) A GPU-accelerated 
Lagrangian dual ascent heuristic for obtaining lower 
bounds on the QAP. These algorithms will be used 
in a parallel branch-and-bound scheme to solve large 
QAPs to optimality. 

INTRODUCTION
Assignment Problems are fundamental to the 
discovery in diverse branches of science and 
engineering. Some of their applications include 
information fusion, protein-protein interaction 
analysis, facilities design, vehicle routing, and 
resource scheduling. To gain meaningful insights, 
many applications demand quick solutions to large 
instances of Assignment Problems containing 
hundreds of thousands of vertices. This makes it 
incredibly challenging for the sequential algorithms 
designed for a single processor. Therefore, designing 
fast and scalable algorithms suitable for the state-
of-the-art parallel programming architectures is 
essential. In this research, we intend to propose 
novel parallel algorithms for the Compute Unified 
Device Architecture (CUDA) enabled NVIDIA GPUs 
to solve the following two Assignment Problems.

Linear Assignment Problem (LAP): The objective 
of the LAP is to assign “n” resources to “n” tasks such 
that the total cost of the assignment is minimized. 
LAP can be solved in polynomial time using one 
of the many sequential/parallel algorithms that 
have been proposed in the literature. We chose to 
parallelize the famous Hungarian algorithm [1] on 
a GPU, whose theoretical complexity is O(n3). 

Quadratic Assignment Problem (QAP): QAP was 
introduced by [2] as a mathematical model to locate 
indivisible economical activities (such as facilities) 
on a set of locations so as to minimize a quadratic 
cost function. One of the ways of solving the QAP 
is to convert it into a Mixed Integer Linear Program 
(MILP) by introducing additional variables and 
constraints and solve it using branch-and-bound 
with the help of a strong lower bounding technique. 
We chose to parallelize the Lagrangian dual ascent 
algorithm for Level-2 Refactorization-Linearization 
Technique (RLT2) proposed by [3], in which we 
need to solve O(n4) LAPs and adjust O(n6) Lagrange 
multipliers to obtain a strong lower bound on the 
QAP. 

METHODS & RESULTS
GPU-accelerated LAP solver: We have proposed 
two GPU-accelerated variants of the Hungarian 
algorithm. Our main contribution is an efficient 
GPU-based parallel algorithm for the augmenting 
path search, which is the most time intensive step. 
We show that our algorithm(s) can find multiple 
vertex-disjoint augmenting, which drastically 
reduces the execution time. Extensive numerical 
tests reveal that for problems with n > 1000, our 
algorithm(s) (CU-CLASS and CU-TREE) are 
substantially faster than the sequential and OpenMP 
implementations (OMP-1 and OMP-8) solved on a 
multi-core CPU (Fig. 1). 

GPU-accelerated RLT2 solve: We designed a 
parallel Lagrangian dual ascent heuristic for solving 
RLT2 using hybrid MPI+CUDA architecture (Fig. 
2), for which we used multiple GPUs. The O(n4) 
LAPs are split across these GPUs and solved using 
our GPU-accelerated Hungarian algorithm, while 
the O(n6) Lagrange multipliers are updated by 
multiple CUDA threads in parallel. This algorithm 
is scalable and provides good parallel speedup (Fig. 
3) for problem instances Nug18, Nug20, Nug22, and 
Nug25 from the QAPLIB [4].

Parallel branch-and-bound solver for QAP: In this 
work, we used GPU-accelerated RLT2 solver in a 
branch-and-bound scheme to solve QAP instances 
to optimality. For a node in the search tree, we fix 
a facility to a location and solve the corresponding 
RLT2 sub-problem, whose objective value provides 
a lower bound on the QAP. If this value is greater 
than the incumbent solution then the node is 
fathomed, otherwise, it is branched further. Each 
node is processed using a bank of GPUs. By using 
multiple such banks, we can process multiple 

nodes in parallel. Table 1 shows the results for 
problem instances Nug18, Nug20, and Nug22 from 
the QAPLIB.

WHY BLUE WATERS
In a typical branch-and-bound tree, we need to 
explore a large number of nodes in order to find an 
optimal solution. Also, as the problem size grows, 
the number of nodes that need to be explored grows 
exponentially.  Therefore, we need a large number 
of processors which can explore the solution space 
in parallel. Additionally, the GPU-accelerated dual 
ascent procedure benefits from the large number 
of powerful GPU-enabled processors available 
at the Blue Waters facility. Coupling the parallel 
branch-and-bound with the fast GPU-based lower 
bounding techniques will enable us to solve large-
sized problems from the QAPLIB, which still remain 
unsolved.

NEXT GENERATION WORK
Our ultimate objective through this research is to 
provide efficient solution methods for a class of 
Assignment Problems. These problems arise in 
diverse branches of science and engineering and 

TABLE 1: Branch-and-bound results for medium-sized QAPs.
FIGURE 1: Comparison 

of execution times 

for CPU-based (OMP-

1 and OMP-8) and GPU-

based (CU-CLASS and 

CU-TREE) Hungarian 

algorithms.

FIGURE 2: 

MPI+CUDA hybrid 

parallelization 

scheme for 

Lagrangian dual 

ascent.
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they are part of many cutting-edge projects with 
high socio-economic impact. Using our methods, 
scientists and engineers will be able to solve 
Assignment Problems containing hundreds of 
thousands of vertices within a matter of minutes, 
leading to transformative discoveries. The parallel 
programming library developed during this 
research will provide a platform for solving large-
scale Assignment Problems and comparing the 
performance of different algorithms, thus ensuring 
continued advancement of science and engineering.
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FIGURE 3: Scalability results for 200 iterations of 

parallel Lagrangian dual ascent on instances from QAPLIB.

FIGURE 1: 

Communication 

in sparse 

matrix-vector 

multiplication

FIGURE 2: Effect 

of matrix 

sparsification on 

solver time.
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EXECUTIVE SUMMARY

Sparse matrix computations are a common 
element in a range of high-performance computing 
applications and often dominate computation, 
particularly at scale. The goal of this project is 
to develop numerical schemes that limit parallel 
communication in sparse matrix methods, leading 
to efficient and scalable sparse operations without 
loss of accuracy.

Iterative methods for approximating the solution 
to sparse linear systems rely on sparse matrix-vector 
multiplication as a key computational kernel. Yet 
communication costs drive the complexity of these 
operations. The focus of this project is on algorithm 
design to alleviate communication costs at scale.  

This project has contributed two key developments: 
the ability to sparsify the matrix operations to limit 
communication and the method of redundant 
computation to localize computation, thus limiting 
communication distance and time.

INTRODUCTION
Sparse matrix problems of the form Ax=b are 
common in many large-scale simulations. In this 
project, multigrid methods are considered as a 
method for the iterative approximation for this 
problem. Multigrid methods construct a series or 
hierarchy of smaller sparse matrices that are used 
to form an iterative refinement of the solution. 
This leads to fewer floating-point operations in 
the solution to Ax=b, but potentially very high 
communication costs and memory movement 
relative to the amount data in the computation.

A key kernel in this process is that of sparse matrix-
vector multiplication w ‹– A v. Here, the sparsity 
pattern—or the location of non-zero entries in the 
matrix—governs the computational expense of the 
operation. A common bottleneck in the computation 
is the scenario where the sparse matrix resides on a 
high number of cores with a low number of matrix 
elements per core (Fig. 1).

Achieving efficiency in these computations is 
critical as many applications rely on these sparse 

operations throughout the simulation, leading to 
significant resource usage.

METHODS & RESULTS
Two methods were explored to address the 
communication demands in the problem.  First, a 
method of sparsification whereby specific entries in 
the matrix are eliminated from the computation is 
explored. In multigrid, the matrices in the hierarchy 
are successively smaller, but relatively more dense, 
leading to wider communication patterns. A method 
is designed in [1] that avoids communicating work 
associated with weak or low-influence matrix 
entries in the problem. This leads to a notable 
speed-up of 2x, particularly at large core counts 
(Fig. 2). In addition, the topology of the system is 
also incorporated in the communication of sparse 
entries, preferring local on-node communication in 
the algorithm. This leads to a significant reduction 
in total message traffic, thereby reducing system 
contention and total simulation time (Fig. 3).

Ultimately, sparse matrices in the multigrid 
hierarchy are too small to reside on the full set of 
processing elements. Therefore a redistribution of 
data is needed to map matrix data to a subset of 
processors.  This comes at a cost, which was explored 
in this project. By performing a redistribution of data 
based on a performance model, nearly scalable results 
can be achieved. As an example, for p processors, 
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