
Problem No. of
banks

GPUs per
bank

Nodes
explored Time (min) Avg. Bank

utilization

Nug18 10 9 514 16.75 0.916

Nug20 10 10 669 38.31 0.859

Nug22 12 12 969 56.63 0.931

PARALLEL ALGORITHMS FOR SOLVING LARGE
ASSIGNMENT PROBLEMS

PI: Rakesh Nagi1

Co-PI: Ketan Date1

1University of Illinois at Urbana-Champaign

EXECUTIVE SUMMARY

The goal of our project is to develop fast and
scalable algorithms for solving large instances of
Linear Assignment Problem (LAP) and Quadratic
Assignment Problem (QAP) using Graphics
Processing Units (GPUs). LAP is polynomial-time
solvable with cubic worst-case complexity, while the
QAP is strongly non-deterministic polynomial-time
hard (NP-Hard). To solve a linearized model of the
QAP using branch-and-bound, lower bounds must
be calculated using the Lagrangian dual technique,
in which a large number of LAPs must be solved
efficiently. Additionally, in a branch-and-bound
scheme, a large number of nodes must be explored
to find a provable optimal solution. To this end,
we have used Blue Waters to develop: (1) A GPU-
accelerated Hungarian algorithm for solving large
LAPs in an efficient manner; (2) A GPU-accelerated
Lagrangian dual ascent heuristic for obtaining lower
bounds on the QAP. These algorithms will be used
in a parallel branch-and-bound scheme to solve large
QAPs to optimality.

INTRODUCTION
Assignment Problems are fundamental to the
discovery in diverse branches of science and
engineering. Some of their applications include
information fusion, protein-protein interaction
analysis, facilities design, vehicle routing, and
resource scheduling. To gain meaningful insights,
many applications demand quick solutions to large
instances of Assignment Problems containing
hundreds of thousands of vertices. This makes it
incredibly challenging for the sequential algorithms
designed for a single processor. Therefore, designing
fast and scalable algorithms suitable for the state-
of-the-art parallel programming architectures is
essential. In this research, we intend to propose
novel parallel algorithms for the Compute Unified
Device Architecture (CUDA) enabled NVIDIA GPUs
to solve the following two Assignment Problems.

Linear Assignment Problem (LAP): The objective
of the LAP is to assign “n” resources to “n” tasks such
that the total cost of the assignment is minimized.
LAP can be solved in polynomial time using one
of the many sequential/parallel algorithms that
have been proposed in the literature. We chose to
parallelize the famous Hungarian algorithm [1] on
a GPU, whose theoretical complexity is O(n3).

Quadratic Assignment Problem (QAP): QAP was
introduced by [2] as a mathematical model to locate
indivisible economical activities (such as facilities)
on a set of locations so as to minimize a quadratic
cost function. One of the ways of solving the QAP
is to convert it into a Mixed Integer Linear Program
(MILP) by introducing additional variables and
constraints and solve it using branch-and-bound
with the help of a strong lower bounding technique.
We chose to parallelize the Lagrangian dual ascent
algorithm for Level-2 Refactorization-Linearization
Technique (RLT2) proposed by [3], in which we
need to solve O(n4) LAPs and adjust O(n6) Lagrange
multipliers to obtain a strong lower bound on the
QAP.

METHODS & RESULTS
GPU-accelerated LAP solver: We have proposed
two GPU-accelerated variants of the Hungarian
algorithm. Our main contribution is an efficient
GPU-based parallel algorithm for the augmenting
path search, which is the most time intensive step.
We show that our algorithm(s) can find multiple
vertex-disjoint augmenting, which drastically
reduces the execution time. Extensive numerical
tests reveal that for problems with n > 1000, our
algorithm(s) (CU-CLASS and CU-TREE) are
substantially faster than the sequential and OpenMP
implementations (OMP-1 and OMP-8) solved on a
multi-core CPU (Fig. 1).

GPU-accelerated RLT2 solve: We designed a
parallel Lagrangian dual ascent heuristic for solving
RLT2 using hybrid MPI+CUDA architecture (Fig.
2), for which we used multiple GPUs. The O(n4)
LAPs are split across these GPUs and solved using
our GPU-accelerated Hungarian algorithm, while
the O(n6) Lagrange multipliers are updated by
multiple CUDA threads in parallel. This algorithm
is scalable and provides good parallel speedup (Fig.
3) for problem instances Nug18, Nug20, Nug22, and
Nug25 from the QAPLIB [4].

Parallel branch-and-bound solver for QAP: In this
work, we used GPU-accelerated RLT2 solver in a
branch-and-bound scheme to solve QAP instances
to optimality. For a node in the search tree, we fix
a facility to a location and solve the corresponding
RLT2 sub-problem, whose objective value provides
a lower bound on the QAP. If this value is greater
than the incumbent solution then the node is
fathomed, otherwise, it is branched further. Each
node is processed using a bank of GPUs. By using
multiple such banks, we can process multiple

nodes in parallel. Table 1 shows the results for
problem instances Nug18, Nug20, and Nug22 from
the QAPLIB.

WHY BLUE WATERS
In a typical branch-and-bound tree, we need to
explore a large number of nodes in order to find an
optimal solution. Also, as the problem size grows,
the number of nodes that need to be explored grows
exponentially. Therefore, we need a large number
of processors which can explore the solution space
in parallel. Additionally, the GPU-accelerated dual
ascent procedure benefits from the large number
of powerful GPU-enabled processors available
at the Blue Waters facility. Coupling the parallel
branch-and-bound with the fast GPU-based lower
bounding techniques will enable us to solve large-
sized problems from the QAPLIB, which still remain
unsolved.

NEXT GENERATION WORK
Our ultimate objective through this research is to
provide efficient solution methods for a class of
Assignment Problems. These problems arise in
diverse branches of science and engineering and

TABLE 1: Branch-and-bound results for medium-sized QAPs.
FIGURE 1: Comparison

of execution times

for CPU-based (OMP-

1 and OMP-8) and GPU-

based (CU-CLASS and

CU-TREE) Hungarian

algorithms.

FIGURE 2:

MPI+CUDA hybrid

parallelization

scheme for

Lagrangian dual

ascent.

	 2016BLUE WATERS ANNUAL REPORT

164 165

they are part of many cutting-edge projects with
high socio-economic impact. Using our methods,
scientists and engineers will be able to solve
Assignment Problems containing hundreds of
thousands of vertices within a matter of minutes,
leading to transformative discoveries. The parallel
programming library developed during this
research will provide a platform for solving large-
scale Assignment Problems and comparing the
performance of different algorithms, thus ensuring
continued advancement of science and engineering.

PUBLICATIONS AND DATA SETS
Date, K., R. Nagi, GPU-accelerated Hungarian

algorithms for the Linear Assignment Problem.
Parallel Comput., (2016), http://dx.doi.org/10.1016/j.
parco.2016.05.012

FIGURE 3: Scalability results for 200 iterations of

parallel Lagrangian dual ascent on instances from QAPLIB.

FIGURE 1:

Communication

in sparse

matrix-vector

multiplication

FIGURE 2: Effect

of matrix

sparsification on

solver time.

THE NEXT GENERATION OF LARGE-SCALE SPARSE
MATRIX COMPUTATIONS

PI: Luke Olson1
Collaborators: Amanda Bienz1, Bill Gropp1, and Andrew Reisner1

1University of Illinois at Urbana-Champaign

EXECUTIVE SUMMARY

Sparse matrix computations are a common
element in a range of high-performance computing
applications and often dominate computation,
particularly at scale. The goal of this project is
to develop numerical schemes that limit parallel
communication in sparse matrix methods, leading
to efficient and scalable sparse operations without
loss of accuracy.

Iterative methods for approximating the solution
to sparse linear systems rely on sparse matrix-vector
multiplication as a key computational kernel. Yet
communication costs drive the complexity of these
operations. The focus of this project is on algorithm
design to alleviate communication costs at scale.

This project has contributed two key developments:
the ability to sparsify the matrix operations to limit
communication and the method of redundant
computation to localize computation, thus limiting
communication distance and time.

INTRODUCTION
Sparse matrix problems of the form Ax=b are
common in many large-scale simulations. In this
project, multigrid methods are considered as a
method for the iterative approximation for this
problem. Multigrid methods construct a series or
hierarchy of smaller sparse matrices that are used
to form an iterative refinement of the solution.
This leads to fewer floating-point operations in
the solution to Ax=b, but potentially very high
communication costs and memory movement
relative to the amount data in the computation.

A key kernel in this process is that of sparse matrix-
vector multiplication w ‹– A v. Here, the sparsity
pattern—or the location of non-zero entries in the
matrix—governs the computational expense of the
operation. A common bottleneck in the computation
is the scenario where the sparse matrix resides on a
high number of cores with a low number of matrix
elements per core (Fig. 1).

Achieving efficiency in these computations is
critical as many applications rely on these sparse

operations throughout the simulation, leading to
significant resource usage.

METHODS & RESULTS
Two methods were explored to address the
communication demands in the problem. First, a
method of sparsification whereby specific entries in
the matrix are eliminated from the computation is
explored. In multigrid, the matrices in the hierarchy
are successively smaller, but relatively more dense,
leading to wider communication patterns. A method
is designed in [1] that avoids communicating work
associated with weak or low-influence matrix
entries in the problem. This leads to a notable
speed-up of 2x, particularly at large core counts
(Fig. 2). In addition, the topology of the system is
also incorporated in the communication of sparse
entries, preferring local on-node communication in
the algorithm. This leads to a significant reduction
in total message traffic, thereby reducing system
contention and total simulation time (Fig. 3).

Ultimately, sparse matrices in the multigrid
hierarchy are too small to reside on the full set of
processing elements. Therefore a redistribution of
data is needed to map matrix data to a subset of
processors. This comes at a cost, which was explored
in this project. By performing a redistribution of data
based on a performance model, nearly scalable results
can be achieved. As an example, for p processors,

	 2016BLUE WATERS ANNUAL REPORT

166 167

