
KINETIC MODELING AND SIMULATION OF
HYPERSONIC, SHOCK-BOUNDARY LAYER
INTERACTIONS USING PETASCALE COMPUTING

Allocation: Illinois/70.0 Knh
PI: Deborah A. Levin1

1University of Illinois at Urbana Champaign

EXECUTIVE SUMMARY

The modeling of shock-boundary layer interactions
of three-dimensional hypersonic flows using kinetic,
particle methods such as direct simulation Monte
Carlo (DSMC), provides the highest fidelity in
understanding thermochemical non-equilibrium
processes when extremely complex shock
interactions are present. We have developed an
Octree based (message passing interface) MPI-
parallelized code that takes advantage of Adaptive
Mesh Refinement (AMR) techniques to maximize
the placement of computational particles in flow
regions where the collision frequency is highest.
Such continuum-like conditions create massive
computational loads in simulating several billions
of particles. To perform such continuum-like
computations, it was important that the code have
superior algorithmic efficiency amenable to high
scalability. This code required the implementation of
Morton-Z space filling curve that facilitates a direct
access of leaf cells in an Octree and careful attention
to efficient use of the cache.

INTRODUCTION
Hypersonic flow over a double wedge configuration
at continuum-like free stream conditions has been
a challenging problem because of the multiple
shock-shock and shock-boundary layer interaction,
separated flows near the hinge, sheer layer, and three-
dimensional effects. These conditions generate a
mesh that is highly non-uniform because of very high
levels of refinement near the wedge as shown in Fig.
1. It can be seen that the dense mesh obtained after
the shock just near the hinge for the aforementioned
double wedge case is highly non-uniform because of
the high gradients. The Octree cells lying near the
surface are highly refined as compared to those in the
free stream and inside the geometry. Therefore, these
cells have to perform a lot of work while others wait
idly at the end of each time step, which is unfavorable
as the full capacity of all the processors is not utilized
and we essentially see a high degree of imbalance
of the load among the processors. Furthermore, at
high computational loads, the communication time
starts to increase.

METHODS & RESULTS
The main tasks in any DSMC code are (1) the
movement of particles, (2) their mapping to
the correct computational cell after movement,
(3) sampling or the calculation of the particle
macroscopic properties, and (4) performing binary
collisions. Note that; the DSMC algorithm is efficient
because it is assumed that particle movement and
collisions may be decoupled. The earlier version
of our code required recursive access of particle
data by linked-lists to accommodate the dynamic
changes in the number of particles and the number
of computational cells. As a result, it took three times
longer, per particle, than a Fortran 77 DSMC code.
Upon close examination, it was found that both

codes took the same amount of time to perform
collisions, but the main difference was due to the
recursive pointer based access of cells in an AMR-
based unstructured code. To avoid this cost but
retain the flexibility of the unstructured mesh, a
Morton-Z space filling curve that facilitates direct
access to leaf cells in an Octree was implemented.
In addition, the entire data structure of the SUGAR
code was replaced by arrays instead of a pointer-
based system, which now ensured that the code gave
superior performance, per processor.

After achieving the optimum algorithmic
efficiency along with preserving the unstructured
nature of the mesh, the scalability of the code was
improved. Figure 2 shows the speed up plot for
the strong scaling in comparison with the earlier
version of the SUGAR code. The earlier version of
the code was partitioned using a simple 2-D blocking
algorithm where the division of the domain was done
at the root (Octree) level. It was further coupled with
the state-of-the-art graph partitioning tool Zoltan
in an attempt to obtain better load balancing and
reduce the communication between the processors.
The speed up curve for a case of the flow of argon
over a hemisphere using 2-D blocking algorithm and
Scotch graph partitioner is shown in the figure. It
can be seen that the maximum speed up by a just
factor of four was observed with a 16 times increase
in the number of ranks, and the use of Scotch made
no difference. However, after many improvements,
the current version of the SUGAR code shows a
near-ideal speed up by a factor of 64. This increase
in speed was a result of the following improvements:
1) The domain was portioned now at the leaf level,
now possible with the implementation of space
filling curves. This also gave better flexibility in
balancing the computational loads. 2) Instead of
manually putting the weighting criterion based on
the number of particles, cells, or geometry panels
in a leaf cell, the code was modified to take into
account the time taken to perform each of these
tasks after the steady state is reached by profiling
these times, it comes up with an optimum weighting
criterion during the runtime. 3) Attempts to reduce
the communication among neighboring processors
by creating a list of possible communication pairs
resulted in a tremendous improvement in strong
scaling. 4) The introduction of particles into the
computational domain at the inlet was parallelized,
and efforts for further modifications are ongoing.
5) More efficient use of memory. Regarding weak
scaling, the SUGAR code can simulate 3 billion

particles with 90% parallel efficiency and the tests
for a higher number of processors is ongoing.

WHY BLUE WATERS
The main advantage of Blue Waters is its massive
number of nodes. A single actual low Knudsen
number double-wedge case takes approximately
10,500 node-hours.

NEXT GENERATION WORK
At present, the SUGAR solver can simulate
hypersonic neutral and charged particle flows
through highly irregular porous geometries and
efforts are directed to include chemistry and
radiation. We envision new architectures with
considerably more memory per CPU to enable us
to achieve the levels of parallelization required to
solve unsteady, transitional flows.

PUBLICATIONS AND DATA SETS
Sawant, S., R. et al., Study of Shock-Shock

interactions Using an Unstructured AMR Octree
DSMC Code, AIAA SciTech 2016, January 4th 2016,
Paper No. 2016-0501

Jambunathan, R. and D. Levin, Advanced
Parallelization Strategies for Modeling Flow Through
Ablative Thermal Protection Systems, AIAA Paper
No. 2016-3387, (2016), 46th, AIAA Thermophysics
Conference, 10.2514/6.2016-3387.

FIGURE 1: Need for

linearization for

hypersonic modeling

of shock-boundary

layer interactions.

FIGURE 2: Strong

scaling performance

of the improved

SUGAR DSMC code.

	 2016BLUE WATERS ANNUAL REPORT

150 151

