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EXECUTIVE SUMMARY

The modeling of shock-boundary layer interactions 
of three-dimensional hypersonic flows using kinetic, 
particle methods such as direct simulation Monte 
Carlo (DSMC), provides the highest fidelity in 
understanding thermochemical non-equilibrium 
processes when extremely complex shock 
interactions are present. We have developed an 
Octree based (message passing interface) MPI-
parallelized code that takes advantage of Adaptive 
Mesh Refinement (AMR) techniques to maximize 
the placement of computational particles in flow 
regions where the collision frequency is highest. 
Such continuum-like conditions create massive 
computational loads in simulating several billions 
of particles. To perform such continuum-like 
computations, it was important that the code have 
superior algorithmic efficiency amenable to high 
scalability. This code required the implementation of 
Morton-Z space filling curve that facilitates a direct 
access of leaf cells in an Octree and careful attention 
to efficient use of the cache. 

INTRODUCTION
Hypersonic flow over a double wedge configuration 
at continuum-like free stream conditions has been 
a challenging problem because of the multiple 
shock-shock and shock-boundary layer interaction, 
separated flows near the hinge, sheer layer, and three-
dimensional effects. These conditions generate a 
mesh that is highly non-uniform because of very high 
levels of refinement near the wedge as shown in Fig. 
1. It can be seen that the dense mesh obtained after 
the shock just near the hinge for the aforementioned 
double wedge case is highly non-uniform because of 
the high gradients. The Octree cells lying near the 
surface are highly refined as compared to those in the 
free stream and inside the geometry. Therefore, these 
cells have to perform a lot of work while others wait 
idly at the end of each time step, which is unfavorable 
as the full capacity of all the processors is not utilized 
and we essentially see a high degree of imbalance 
of the load among the processors. Furthermore, at 
high computational loads, the communication time 
starts to increase. 

METHODS & RESULTS
The main tasks in any DSMC code are (1) the 
movement of particles, (2) their mapping to 
the correct computational cell after movement, 
(3) sampling or the calculation of the particle 
macroscopic properties, and (4) performing binary 
collisions. Note that; the DSMC algorithm is efficient 
because it is assumed that particle movement and 
collisions may be decoupled. The earlier version 
of our code required recursive access of particle 
data by linked-lists to accommodate the dynamic 
changes in the number of particles and the number 
of computational cells. As a result, it took three times 
longer, per particle, than a Fortran 77 DSMC code. 
Upon close examination, it was found that both 

codes took the same amount of time to perform 
collisions, but the main difference was due to the 
recursive pointer based access of cells in an AMR-
based unstructured code. To avoid this cost but 
retain the flexibility of the unstructured mesh, a 
Morton-Z space filling curve that facilitates direct 
access to leaf cells in an Octree was implemented. 
In addition, the entire data structure of the SUGAR 
code was replaced by arrays instead of a pointer-
based system, which now ensured that the code gave 
superior performance, per processor.

After achieving the optimum algorithmic 
efficiency along with preserving the unstructured 
nature of the mesh, the scalability of the code was 
improved. Figure 2 shows the speed up plot for 
the strong scaling in comparison with the earlier 
version of the SUGAR code. The earlier version of 
the code was partitioned using a simple 2-D blocking 
algorithm where the division of the domain was done 
at the root (Octree) level. It was further coupled with 
the state-of-the-art graph partitioning tool Zoltan 
in an attempt to obtain better load balancing and 
reduce the communication between the processors. 
The speed up curve for a case of the flow of argon 
over a hemisphere using 2-D blocking algorithm and 
Scotch graph partitioner is shown in the figure. It 
can be seen that the maximum speed up by a just 
factor of four was observed with a 16 times increase 
in the number of ranks, and the use of Scotch made 
no difference. However, after many improvements, 
the current version of the SUGAR code shows a 
near-ideal speed up by a factor of 64. This increase 
in speed was a result of the following improvements:  
1) The domain was portioned now at the leaf level, 
now possible with the implementation of space 
filling curves. This also gave better flexibility in 
balancing the computational loads. 2) Instead of 
manually putting the weighting criterion based on 
the number of particles, cells, or geometry panels 
in a leaf cell, the code was modified to take into 
account the time taken to perform each of these 
tasks after the steady state is reached by profiling 
these times, it comes up with an optimum weighting 
criterion during the runtime. 3) Attempts to reduce 
the communication among neighboring processors 
by creating a list of possible communication pairs 
resulted in a tremendous improvement in strong 
scaling. 4) The introduction of particles into the 
computational domain at the inlet was parallelized, 
and efforts for further modifications are ongoing. 
5) More efficient use of memory. Regarding weak 
scaling, the SUGAR code can simulate 3 billion 

particles with 90% parallel efficiency and the tests 
for a higher number of processors is ongoing.

WHY BLUE WATERS
The main advantage of Blue Waters is its massive 
number of nodes. A single actual low Knudsen 
number double-wedge case takes approximately 
10,500 node-hours. 

NEXT GENERATION WORK
At present, the SUGAR solver can simulate 
hypersonic neutral and charged particle flows 
through highly irregular porous geometries and 
efforts are directed to include chemistry and 
radiation.  We envision new architectures with 
considerably more memory per CPU to enable us 
to achieve the levels of parallelization required to 
solve unsteady, transitional flows.
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FIGURE 1: Need for 

linearization for 

hypersonic modeling 

of shock-boundary 

layer interactions.

FIGURE 2: Strong 

scaling performance 

of the improved 

SUGAR DSMC code.
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