
Application Scalability and
Parallel I/O

William Gropp
University of Illinois at

Urbana-Champaign
www.cs.illinois.edu/~wgropp

2

What are the Problems?

• Performance problems aren’t
always where you think
Load and compute resource

imbalance can show up as slow
communication

 I/O performance and reliability
sensitive to access patterns,
configuration

3

Load Imbalance and
Scalability

• Sources of Imbalance
 OS and Runtime share cores, memory,

network
 Application shares network, I/O system
 Few applications have exactly perfect load

balance
• Tools already available to explore

 Can customize tools such as FPMPI to
provide application-specific information;
correlate with node “noise”

 New MPI_T interface can provide additional
details

4

Improving Load Balance and
Core Use

• Use a hybrid (MPI+OpenMP or
MPI+OpenACC) approach to
simplify shifting work between
cores
Have developed new loop schedulers

that provide better data locality,
lower overhead. See poster for
details

• Appropriate for applications
already using a hybrid model or
planning to adopt soon

5

Improving Load Balance and
Core Use

• Use MPI-3 shared memory “MPI+MPI”
 New with MPI-3, supported on Blue Waters
 Allows MPI processes on the same node (or

chip) to allocate memory that is shared
between those processes
• Access to memory is through language, e.g.,

a[72]=2; rather than MPI
 Since all MPI processes share the memory,

they can all easily redistribute work

6

Improving Load Balance and
Core Use

• Improved graph and workload partitioning
 Many codes use a graph partitioner to load balance

work among MPI processes
 Good code exist, but

• All are based on a cost model for nodes, edge cuts

• Cost models often too inaccurate
 Ignore network contention, core/chip/node

placement, overly simple communication cost,
impact of partition on computation cost

 Some parts impossible to do at partition time
• Mapping onto physical hardware, impact of other jobs

• Approach: consider iterative refinement of
partition based on measurements

7

Parallel I/O Performance

• I/O performance for the same data
operation can vary
 Example: 1024 processes, write 16kx16k array

to a single file. Note only 64 nodes.

Stripes Stripe Unit Bandwidth
MB/sec

Collective
I/O?

1 Default 2.87 No
16 16MB 15.5 No
1 Default 371 Yes
16 16MB 3,850 Yes

8

Parallel I/O Performance

• Currently collecting data on use with Darshan
 Over 70k runs already
 Will examine to look for potential

opportunities
• No easy recipe

 Luu et al (HPDC’15) have shown that
common I/O patterns can provide either
good or awful performance, depending on
details

 Fixes need collaboration with teams
• Everything from setting environment variables or

using MPI_Info on file open to code restructure to
use alternative I/O patterns

9

Parallel I/O Performance

• Approach
 Use Darshan data to identify potential for

I/O performance improvement
 May develop application-customized

profiling tools to discover details
• Performance enhancement techniques

 Tune I/O parameters (use autotuning)
 Enable or recode to use buffered I/O
 Restructure to use collective I/O, adapt to

application workflow

10

Summary

• Performance can be lost anywhere
• Rules of thumb may be misleading
• Changes for load balance, I/O will

apply to most systems
• Specifics depend on the

application. Come see the poster
for more information!

