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respectively) freely diffused in the nucleus, whereas
2,000-kDa dextrans were essentially immobile65.
Fluorescence recovery after photobleaching (FRAP)
experiments (BOX 1) indicate ‘homogeneous’movement
of proteins at all nuclear sites, including bleached CTs60.
This finding clearly indicates that proteins can move
‘through’CTs. The IC concept requires that individual
nuclear proteins or small protein complexes roam the
entire interchromatin space (IC plus the interior of
compact chromatin domains). By contrast, diffusion of
larger (sub-) complexes should be constrained to the IC.
Interchromatin channels that expand through CTs28

should even allow channelled movements of such com-
plexes through the CTs. Experiments based on fluores-
cence microscopy at present lack the resolution to 
support or disprove the IC concept.

The CT–IC model
Chromosome territories and the IC provide the funda-
mental components of the CT–IC model of a functional
nuclear architecture.We first consider the essential fea-
tures of this model and then (circumstantial) supporting
evidence.The hypothesis that partial transcription com-
plexes are pre-established in, and that their diffusion is
restricted to, the IC has an important consequence: to
fulfil its role as a functionally defined compartment, the
IC requires a specific topology of transcriptionally active
genes. Regulatory and coding sequences of these active
genes can interact with the transcription machinery only
when they are positioned at the surface of chromatin
domains that line the IC, or on chromatin loops that
extend into the IC (FIG. 1e,f). The argument can be
extended to genes that are subject to short-term inactiva-
tion, the expression of which needs to be rapidly upregu-
lated. By contrast, long-term or permanently silenced
genes should be located within the interior of compact
chromatin domains that are inaccessible to the transcrip-
tion machinery,according to this model. In more general
terms, genes that require long-term silencing should be
physically separated from permanently active genes to an
extent that allows their positioning in different chro-
matin compartments. Chromatin remodelling events
that result in the positioning of genes into proper
nuclear compartments are considered an essential part
of gene-activation and gene-silencing mechanisms.

So much for the predictions of the CT–IC model.
What about experimental evidence to support the
model? In a first version of the CT–IC model, CTs were
considered as compact objects with a smooth envelop-
ing surface and it was assumed that an interchromatin-
domain compartment expanded between these smooth
CT surfaces and was excluded from the entire CT inte-
rior66. Accordingly, it was predicted that genes could
only be transcribed when they were located at the CT
periphery in contact with the IC. However, contrary to
this prediction, transcription and splicing was observed
not only at the periphery but also in the interior of
CTs27,67,68. Concomitantly, more detailed experimental
studies of CT architecture showed that CTs have a com-
plex, folded structure that results in a largely expanded
surface with IC channels that penetrate into the CT

branches between ~1-Mb and ~100-kb chromatin-loop
domains (FIG. 1 and see below).We propose that surfaces
of compact chromatin domains provide a functionally
relevant barrier, which can be penetrated by single pro-
teins or small protein aggregates, but not by larger
macromolecular complexes above a certain threshold
size. The IC (by definition) does not comprise the addi-
tional interchromatin space present between chromatin
fibres in the interior of compact chromatin domains
(FIG. 7c, see below).We further propose that spliced RNA
can be complexed with proteins and exported to the
nuclear pores in the IC space, thus preventing the
entangling of RNA that is produced in the interior of
compact chromatin domains.

A critical evaluation of the IC concept requires a
detailed analysis of the movements of macromolecules
and complexes in the nucleus. The kinetic and thermo-
dynamic aspects of these studies support passive diffu-
sion as the decisive mechanism that is responsible for
the movement of factors and factor complexes60,62. The
conditions that influence these movements (such as
transient binding to immobile obstacles) have not yet
been fully determined63,64. Microinjection of size-frac-
tionated fluorescein isothiocyanate (FITC) dextrans
into HeLa cell nuclei showed that 70- and 580-kDa dex-
trans (equivalent to DNA sizes of 106 and 878 bp,

CHROMATIN FIBRES
These 30-nm fibres are
produced by the compaction 
of 10-nm nucleosome fibres.
Nucleosome fibres are visible
under the electron microscope
after treatments that unfold
higher-order chromatin
packaging into a ‘beads-on-a-
string’10-nm diameter form.
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Figure 3 | Features of human chromosome territories. a | Two-colour painting of the p-arm
(red) and the q-arm (green) of human chromosome 1 in a lymphocyte metaphase spread. 
b | Visualization of the two arms in a light optical section through a human diploid fibroblast
nucleus (bottom) shows two distinct, mutually exclusive arm domains20. ( Image courtesy of
Steffen Dietzel). c | Painting of the human X chromosome (red) and several distal bands of its
p-arm and q-arm (green) using MICRODISSECTION PROBES20. d | Visualization of the active and
inactive X-chromosome territories (Xa and Xi, respectively) together with the respective distal-
band domains in a light optical section through a female human fibroblast nucleus. (Image
courtesy of Joachim Karpf and Irina Solovei). e | Three-dimensional reconstructions of the Xa
and Xi territories from a human female fibroblast nucleus (Reproduced with permission from
REF. 22). The three-dimensional positions of the ANT2 and ANT3 (adenosine nucleotide
translocase) genes are noted as green and blue spheres, respectively. Note that active ANT
genes can be seen at the territory surface (two on Xa and one on Xi). The white box provides 
a transparent view of the Xi territory (pink), indicating the location of the inactive ANT2 gene in
the territory interior. f | Three-dimensonal reconstructions of two chromosome-17 territories,
established from light optical serial sections through a human diploid fibroblast nucleus, 
show complex territory surfaces. (Image courtesy of Irina Solovei.)
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respectively) freely diffused in the nucleus, whereas
2,000-kDa dextrans were essentially immobile65.
Fluorescence recovery after photobleaching (FRAP)
experiments (BOX 1) indicate ‘homogeneous’movement
of proteins at all nuclear sites, including bleached CTs60.
This finding clearly indicates that proteins can move
‘through’CTs. The IC concept requires that individual
nuclear proteins or small protein complexes roam the
entire interchromatin space (IC plus the interior of
compact chromatin domains). By contrast, diffusion of
larger (sub-) complexes should be constrained to the IC.
Interchromatin channels that expand through CTs28

should even allow channelled movements of such com-
plexes through the CTs. Experiments based on fluores-
cence microscopy at present lack the resolution to 
support or disprove the IC concept.

The CT–IC model
Chromosome territories and the IC provide the funda-
mental components of the CT–IC model of a functional
nuclear architecture.We first consider the essential fea-
tures of this model and then (circumstantial) supporting
evidence.The hypothesis that partial transcription com-
plexes are pre-established in, and that their diffusion is
restricted to, the IC has an important consequence: to
fulfil its role as a functionally defined compartment, the
IC requires a specific topology of transcriptionally active
genes. Regulatory and coding sequences of these active
genes can interact with the transcription machinery only
when they are positioned at the surface of chromatin
domains that line the IC, or on chromatin loops that
extend into the IC (FIG. 1e,f). The argument can be
extended to genes that are subject to short-term inactiva-
tion, the expression of which needs to be rapidly upregu-
lated. By contrast, long-term or permanently silenced
genes should be located within the interior of compact
chromatin domains that are inaccessible to the transcrip-
tion machinery,according to this model. In more general
terms, genes that require long-term silencing should be
physically separated from permanently active genes to an
extent that allows their positioning in different chro-
matin compartments. Chromatin remodelling events
that result in the positioning of genes into proper
nuclear compartments are considered an essential part
of gene-activation and gene-silencing mechanisms.

So much for the predictions of the CT–IC model.
What about experimental evidence to support the
model? In a first version of the CT–IC model, CTs were
considered as compact objects with a smooth envelop-
ing surface and it was assumed that an interchromatin-
domain compartment expanded between these smooth
CT surfaces and was excluded from the entire CT inte-
rior66. Accordingly, it was predicted that genes could
only be transcribed when they were located at the CT
periphery in contact with the IC. However, contrary to
this prediction, transcription and splicing was observed
not only at the periphery but also in the interior of
CTs27,67,68. Concomitantly, more detailed experimental
studies of CT architecture showed that CTs have a com-
plex, folded structure that results in a largely expanded
surface with IC channels that penetrate into the CT

branches between ~1-Mb and ~100-kb chromatin-loop
domains (FIG. 1 and see below).We propose that surfaces
of compact chromatin domains provide a functionally
relevant barrier, which can be penetrated by single pro-
teins or small protein aggregates, but not by larger
macromolecular complexes above a certain threshold
size. The IC (by definition) does not comprise the addi-
tional interchromatin space present between chromatin
fibres in the interior of compact chromatin domains
(FIG. 7c, see below).We further propose that spliced RNA
can be complexed with proteins and exported to the
nuclear pores in the IC space, thus preventing the
entangling of RNA that is produced in the interior of
compact chromatin domains.

A critical evaluation of the IC concept requires a
detailed analysis of the movements of macromolecules
and complexes in the nucleus. The kinetic and thermo-
dynamic aspects of these studies support passive diffu-
sion as the decisive mechanism that is responsible for
the movement of factors and factor complexes60,62. The
conditions that influence these movements (such as
transient binding to immobile obstacles) have not yet
been fully determined63,64. Microinjection of size-frac-
tionated fluorescein isothiocyanate (FITC) dextrans
into HeLa cell nuclei showed that 70- and 580-kDa dex-
trans (equivalent to DNA sizes of 106 and 878 bp,
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Figure 3 | Features of human chromosome territories. a | Two-colour painting of the p-arm
(red) and the q-arm (green) of human chromosome 1 in a lymphocyte metaphase spread. 
b | Visualization of the two arms in a light optical section through a human diploid fibroblast
nucleus (bottom) shows two distinct, mutually exclusive arm domains20. ( Image courtesy of
Steffen Dietzel). c | Painting of the human X chromosome (red) and several distal bands of its
p-arm and q-arm (green) using MICRODISSECTION PROBES20. d | Visualization of the active and
inactive X-chromosome territories (Xa and Xi, respectively) together with the respective distal-
band domains in a light optical section through a female human fibroblast nucleus. (Image
courtesy of Joachim Karpf and Irina Solovei). e | Three-dimensional reconstructions of the Xa
and Xi territories from a human female fibroblast nucleus (Reproduced with permission from
REF. 22). The three-dimensional positions of the ANT2 and ANT3 (adenosine nucleotide
translocase) genes are noted as green and blue spheres, respectively. Note that active ANT
genes can be seen at the territory surface (two on Xa and one on Xi). The white box provides 
a transparent view of the Xi territory (pink), indicating the location of the inactive ANT2 gene in
the territory interior. f | Three-dimensonal reconstructions of two chromosome-17 territories,
established from light optical serial sections through a human diploid fibroblast nucleus, 
show complex territory surfaces. (Image courtesy of Irina Solovei.)
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consistent with colocalization of centromeres and a similar colo-
calization of telomeres, as described in imaging studies19,20. We 
observed a consistent pattern of contact enrichment for all studied 
human and mouse data sets, despite the acrocentric structure 
of mouse chromosomes (Fig. 4b). For the mouse data set, both 
centromere-centromere and telomere-telomere enrichment are 
captured by E3 (Supplementary Fig. 9); E2 possibly refines the 

signal. The consistent pattern of average inter-arm maps suggests 
that interactions between chromosomal arms are among the most 
prominent features of higher-order chromatin organization in the 
human and mouse genomes19,20.

Multiple attempts have been made to identify distinct chro-
matin types based on Hi-C data7,16. We compared the E1 and E2 
representation of interchromosomal interactions to a model of 
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consistent with colocalization of centromeres and a similar colo-
calization of telomeres, as described in imaging studies19,20. We 
observed a consistent pattern of contact enrichment for all studied 
human and mouse data sets, despite the acrocentric structure 
of mouse chromosomes (Fig. 4b). For the mouse data set, both 
centromere-centromere and telomere-telomere enrichment are 
captured by E3 (Supplementary Fig. 9); E2 possibly refines the 

signal. The consistent pattern of average inter-arm maps suggests 
that interactions between chromosomal arms are among the most 
prominent features of higher-order chromatin organization in the 
human and mouse genomes19,20.

Multiple attempts have been made to identify distinct chro-
matin types based on Hi-C data7,16. We compared the E1 and E2 
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Figure 3 | Eigenvector decomposition of iteratively corrected Hi-C data reveals genome-wide features of chromosome organization. (a) Profiles of E1 
and genomic features along chromosome 1 (1-Mb resolution); E1 is from Hi-C HindIII data7. (b) Scatter plot of E1 versus GC content. Gray dots show GC 
content and E1 of individual 1-Mb regions. Black squares show mean chromosomal values of E1 and mean GC content. Several chromosomes are indicated 
by numbers. (c) Heatmap of interchromosomal contacts between pairs of genomic regions as a function of their E1 values; heatmap shows natural log 
of contact enrichment (see Online Methods). Notice the tendency of regions with similar values of E1 to interact with each other. (d) Top, distribution 
of E1 values; bottom, autocorrelation of E1 (blue) compared to 1,000 shuffled E1 (gray line shows mean, error bars show s.d.). (e) Left, distribution of 
observed eigenvalues ( k) and the distribution of eigenvalues for randomly re-sampled data (see Online Methods). Thirteen significant eigenvalues are 
shown in red. Right, matrix of Pearson correlation coefficients of leading eigenvectors obtained for NcoI and HindIII Hi-C data, revealing robustness of 
the top three eigenvectors. (f) Variation of E2 along chromosomal arms, with higher values near centromeres (Cen) and telomeres (Tel). Gray points  
show values for individual genomic regions; black line shows the mean. (g) Genome-wide interchromosomal interactions mapped onto E1 and E2 space  
at 1-Mb resolution. Regions are colored according to previously proposed16 chromatin types. Notice the lack of evident separation into distinct clusters. 
E1 and E2 calculated for Hi-C HindIII data set7.
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Figure 4 | Cross-data set and cross-species comparisons reveal evolutionary conserved genome-wide chromosome organization. (a) Top left, scatter 
plot of E1 for human versus mouse in syntenic regions. Top right, comparison of observed between-species correlation of E1 (r = 0.81, P < 10−10) with 
GC content–stratified permuted data (r = 0.50, P < 10−10). Bottom, human versus syntenic mouse E1 along human chromosome 1; gaps in the mouse 
profile reflect regions of human chromosome 1 for which there is no corresponding syntenic region in mouse. Human E1 is for TCC HindIII9 data; mouse 
E1 was calculated for mouse Hi-C15 data. (b) Heatmaps of iteratively corrected interchromosomal contact probability averaged over all chromosomal arm 
pairs; heatmaps show the natural log of the contact enrichment, re-scaled and re-binned to 80 × 80 map (see Online Methods). The data are for human 
lymphoblastoid Hi-C HindIII7, human lymphoblastoid TCC9 and mouse pro–B cell Hi-C15.
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map Tij (Tij = k k·Eki·Ekj+constant) , where the relative weights 
of their contributions k are the corresponding eigenvalues. The 
contribution of each track to the total interaction frequency 
between a pair of regions in the corrected map Tij is proportional 
to a product of these preferences (Eki·Ekj). Eigenvectors are sorted 
(E1, E2, E3, …) in descending order by the magnitude of their 
corresponding eigenvalues. Our decomposition operates directly 
on corrected Hi-C data, unlike a previous method that makes  
several additional transformations of the data7. Permutation 
analysis shows that the first 13 eigenvectors are statistically signi-
ficant (P < 0.001). Moreover, the first three are robust between 
human data sets (Fig. 3e, Supplementary Fig. 7 and Online 
Methods) and explain 72% of the interchromosomal data recon-
structed from the first 13 eigenvectors. Thus, we focus on the 
first three eigenvectors for further analysis of interchromosomal  
interaction preferences.

The leading eigenvector, E1, provides a genomic track of inter-
chromosomal interaction preferences along the genome, and it 
shows correlation with many genomic features (Fig. 3a,b), includ-
ing GC content (r = 0.80, P < 10−10), replication timing (r = 0.82,  
P < 10−10, GEO GSM500943), DNase I hypersensitivity (r = 0.79,  
P < 10−10, GEO GSE4334) and many histone marks 
(Supplementary Table 1). The profile of E1 is similar to chromatin  
compartments found previously7, yet E1 shows higher correla-
tion with many genomic features17 both along the chromosomes 
and for average values of whole chromosomes (Fig. 3b; r = 0.95,  
P = 4 × 10−6, versus r = –0.31 for chromatin compartments 
reported previously, Supplementary Fig. 7).

Interaction preferences represented by E1 connect spatial and 
functional genomic organization, as regions with high E1, which 
are gene rich and enriched for active chromatin marks, tend to 

interact more with other similar regions (Fig. 3c). Conversely, 
gene-poor regions with low E1 tend to interact more with other 
gene-poor regions. Despite its tendency to partition active and 
inactive regions of the genome, E1 does not show any bimodality  
(Fig. 3d, top). Neighboring genomic regions display similar inter-
action preferences, as seen from the autocorrelation (Fig. 3d,  
bottom), which decays with a characteristic length of about 6 Mb. 
Taken together, these characteristics of E1 suggest that continuous  
interaction preferences better capture the complexity of chro-
matin interaction landscape at megabase resolution than does a 
two-compartment model7 proposed earlier.

Furthermore, we found evidence for the evolutionary conser-
vation of genome-wide chromosome organization by comparing  
E1 for human and mouse data sets. E1 has high correlation  
(r = 0.81, P < 10−10) in syntenic regions18 of human and mouse 
genomes at the megabase level (Fig. 4a). Moreover, the conserva-
tion of E1 cannot be explained by a confounding effect of similar 
GC content profiles, as demonstrated by a GC content–stratified 
permutation test (Fig. 4a, Online Methods).

We then studied the interaction preference tracks, E2 and E3, 
which constitute the greatest contributions to the corrected map 
after E1. Both E2 and E3 vary with position along chromosomal 
arms (Figs. 1e and 3f), with increased magnitude mostly near 
centromeres for E2 and near telomeres for E3. This pattern of 
interaction is prominent on average inter-arm maps, which 
reveal an enrichment of centromere-centromere and telomere-
telomere contacts (Fig. 4b and Supplementary Fig. 8). Average 
inter-arm maps constructed from projections of the data on E2 
and/or E3, but not E1, show a similar pattern of contact enrich-
ment, directly confirming that arm-level organization is largely 
captured by E2 and E3 (Supplementary Fig. 9). This pattern is 

Figure 2 | Iterative correction of Hi-C data. 
(a) Illustration of iterative correction using 
simulated data. Top, two specific interactions 
(shown by arches) within a chromosome; 
middle, its simulated Hi-C heatmap and a 
vector of random experimental visibility. Notice 
that visibility-induced noise obscures specific 
interactions. Bottom, iteratively corrected 
map of the chromosome in which visibility is 
equalized, revealing two specific interactions 
as bright spots on the heatmap. (b) Matrix of 
biases computed by Yaffe and Tanay16 at 1-Mb 
resolution (top) can be approximated by a 
product of bias vectors Bi × Bj (middle),  
yielding an essentially identical matrix of biases 
(r = 0.99), with their algebraic difference shown 
at the bottom in the same color scheme (see 
also Supplementary Fig. 5). (c) Comparison  
of intrachromosomal Hi-C maps obtained using 
the restriction enzymes HindIII and NcoI  
(200-kb resolution). The correlation is 
computed between off-diagonal regions of 
the map and plotted as a function of distance 
from the main diagonal—that is, the genomic 
separation—as shown in the inset. Analysis was 
performed on raw data (red), singly corrected 
(blue) and iteratively corrected (yellow). (d) Interchromosomal heatmaps: chromosome 1 versus chromosome 2, coarse-grained to 10 Mb, with contact 
frequencies shown by color for HindIII and NcoI before (top row) and after correction (bottom row) (also see Supplementary Fig. 6). (e) Left, cross-
validation for biases inferred from 10% versus 90% of the reads. Right, scaling of intrachromosomal contact probability with genomic distance,  
L, for Hi-C HindIII7 data, at 200-kb resolution, before (red) and after correction (yellow). Black line shows 1/L scaling reported previously7.
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 experimental visibility, including DNA sequencing bias or 
restriction site density. We assume, and demonstrate below, that 
the bias for detecting contacts between two regions can be rep-
resented as the product of the individual biases of these regions. 
Given this assumption of factorizable biases, the expected con-
tact frequency, ij, for every pair of regions, (i,j), can be written  
as ij = BiBjTij , where Bi and Bj are the biases and Tij is  
the sought matrix of relative contact probabilities, normalized 
as i, i j, j 1Tij = 1 for each region j. This normalization ensures a 
uniform coverage profile, that is, equal visibility of each region in 
an iteratively corrected contact map (Fig. 1c and Supplementary 
Fig. 3). Equal visibility can reveal specific interactions otherwise 
buried by visibility-induced biases (Fig. 2a) and allows unbiased 
comparisons within and between Hi-C data sets. Because an 
experiment represents a sample from a distribution of possible 
interactions, the observed interaction frequency is a realiza-
tion from some distribution with expectation ij. For a range of 
distributions, the maximum-likelihood solution for biases Bi is 
obtained by iteratively solving a system of equations (iterative 
correction), yielding a corrected Hi-C map (see Supplementary 
Note). We note that this procedure can be extended to include 
SS reads (Supplementary Fig. 4).

We validate our assumption of factorizable biases by analyzing 
interchromosomal biases inferred via a recently proposed com-
putationally intensive machine-learning procedure16. This study 
calculated a matrix of biases, Bij, by explicitly considering restric-
tion fragment–level biases associated with fragment length, GC 
content and mappability at megabase resolution. We find that Bij 
can be accurately described as a product of two vectors of biases  
(Bij  BiBj), explaining 99.99% of the variance (Fig. 2b). Iteratively 
corrected interchromosomal data is highly correlated with pre-
viously obtained corrected maps16 (r = 0.98, here and below 
denoting Spearman correlation; P < 10−10; Supplementary Fig. 5).  
Because known biases are factorizable, uncharacterized biases are 
likely to be factorizable too and would be removed by ICE.

To validate our method, we first compared Hi-C maps obtained 
using different restriction enzymes (Fig. 2c,d). In raw data, the 
correlation between Hi-C data generated with different enzymes 
can be quite low because of enzyme-dependent biases. Corrected 
maps show an increased between-enzyme correlation of corre-
sponding off-diagonal intrachromosomal elements (Fig. 2c). 
Iterative correction also increases between-enzyme correlation 
for interchromosomal maps to the level of correlation between 
halves of the same data set (Fig. 2d and Supplementary Fig. 6a). 
To compare to a previous method16, we applied the same smooth-
ing technique and obtained a similar between-enzyme correla-
tion r = 0.71 (r = 0.59 was obtained earlier16). Next, we performed 
cross-validations using 10% or 90% of the read pairs and obtain 
biases that are highly correlated (r = 0.98, P < 10−10, HindIII), 
demonstrating that our method does not over-fit (Fig. 2e). We 
also note that an important property of intrachromosomal maps, 
the decay of contact probability with genomic distance, remains 
unchanged after correction (Fig. 2e).

Previous attempts to correct Hi-C data used a single division 
by a product of the visibilities of two regions7,10,16. Applying this 
procedure once only partially corrects for nonuniform cover-
age (Fig. 2c), tends to flip the coverage profile (Supplementary  
Fig. 6c) and leads to a solution that depends on the initial normal-
ization of the data, thus making results of the correction unpre-
dictable. However, applying this procedure iteratively eliminates 
all factorizable biases, leads to uniform coverage and obtains  
better agreement between data sets (Fig. 2c,d).

Eigenvector analysis of chromosomal organization
The next step in ICE analysis decomposes an iteratively corrected 
genome-wide map into a series of genomic tracks to reveal the 
main features of higher-order chromosomal organization (Fig. 3  
and Online Methods). Each track k represents interaction 
 preferences (Eki) of genomic region i. Independent interaction 
preference tracks Ek can be found as eigenvectors of the corrected 
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consistent with colocalization of centromeres and a similar colo-
calization of telomeres, as described in imaging studies19,20. We 
observed a consistent pattern of contact enrichment for all studied 
human and mouse data sets, despite the acrocentric structure 
of mouse chromosomes (Fig. 4b). For the mouse data set, both 
centromere-centromere and telomere-telomere enrichment are 
captured by E3 (Supplementary Fig. 9); E2 possibly refines the 

signal. The consistent pattern of average inter-arm maps suggests 
that interactions between chromosomal arms are among the most 
prominent features of higher-order chromatin organization in the 
human and mouse genomes19,20.

Multiple attempts have been made to identify distinct chro-
matin types based on Hi-C data7,16. We compared the E1 and E2 
representation of interchromosomal interactions to a model of 
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Figure 3 | Eigenvector decomposition of iteratively corrected Hi-C data reveals genome-wide features of chromosome organization. (a) Profiles of E1 
and genomic features along chromosome 1 (1-Mb resolution); E1 is from Hi-C HindIII data7. (b) Scatter plot of E1 versus GC content. Gray dots show GC 
content and E1 of individual 1-Mb regions. Black squares show mean chromosomal values of E1 and mean GC content. Several chromosomes are indicated 
by numbers. (c) Heatmap of interchromosomal contacts between pairs of genomic regions as a function of their E1 values; heatmap shows natural log 
of contact enrichment (see Online Methods). Notice the tendency of regions with similar values of E1 to interact with each other. (d) Top, distribution 
of E1 values; bottom, autocorrelation of E1 (blue) compared to 1,000 shuffled E1 (gray line shows mean, error bars show s.d.). (e) Left, distribution of 
observed eigenvalues ( k) and the distribution of eigenvalues for randomly re-sampled data (see Online Methods). Thirteen significant eigenvalues are 
shown in red. Right, matrix of Pearson correlation coefficients of leading eigenvectors obtained for NcoI and HindIII Hi-C data, revealing robustness of 
the top three eigenvectors. (f) Variation of E2 along chromosomal arms, with higher values near centromeres (Cen) and telomeres (Tel). Gray points  
show values for individual genomic regions; black line shows the mean. (g) Genome-wide interchromosomal interactions mapped onto E1 and E2 space  
at 1-Mb resolution. Regions are colored according to previously proposed16 chromatin types. Notice the lack of evident separation into distinct clusters. 
E1 and E2 calculated for Hi-C HindIII data set7.
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Figure 4 | Cross-data set and cross-species comparisons reveal evolutionary conserved genome-wide chromosome organization. (a) Top left, scatter 
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GC content–stratified permuted data (r = 0.50, P < 10−10). Bottom, human versus syntenic mouse E1 along human chromosome 1; gaps in the mouse 
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consistent with colocalization of centromeres and a similar colo-
calization of telomeres, as described in imaging studies19,20. We 
observed a consistent pattern of contact enrichment for all studied 
human and mouse data sets, despite the acrocentric structure 
of mouse chromosomes (Fig. 4b). For the mouse data set, both 
centromere-centromere and telomere-telomere enrichment are 
captured by E3 (Supplementary Fig. 9); E2 possibly refines the 

signal. The consistent pattern of average inter-arm maps suggests 
that interactions between chromosomal arms are among the most 
prominent features of higher-order chromatin organization in the 
human and mouse genomes19,20.

Multiple attempts have been made to identify distinct chro-
matin types based on Hi-C data7,16. We compared the E1 and E2 
representation of interchromosomal interactions to a model of 
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Figure 3 | Eigenvector decomposition of iteratively corrected Hi-C data reveals genome-wide features of chromosome organization. (a) Profiles of E1 
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content and E1 of individual 1-Mb regions. Black squares show mean chromosomal values of E1 and mean GC content. Several chromosomes are indicated 
by numbers. (c) Heatmap of interchromosomal contacts between pairs of genomic regions as a function of their E1 values; heatmap shows natural log 
of contact enrichment (see Online Methods). Notice the tendency of regions with similar values of E1 to interact with each other. (d) Top, distribution 
of E1 values; bottom, autocorrelation of E1 (blue) compared to 1,000 shuffled E1 (gray line shows mean, error bars show s.d.). (e) Left, distribution of 
observed eigenvalues ( k) and the distribution of eigenvalues for randomly re-sampled data (see Online Methods). Thirteen significant eigenvalues are 
shown in red. Right, matrix of Pearson correlation coefficients of leading eigenvectors obtained for NcoI and HindIII Hi-C data, revealing robustness of 
the top three eigenvectors. (f) Variation of E2 along chromosomal arms, with higher values near centromeres (Cen) and telomeres (Tel). Gray points  
show values for individual genomic regions; black line shows the mean. (g) Genome-wide interchromosomal interactions mapped onto E1 and E2 space  
at 1-Mb resolution. Regions are colored according to previously proposed16 chromatin types. Notice the lack of evident separation into distinct clusters. 
E1 and E2 calculated for Hi-C HindIII data set7.
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map Tij (Tij = k k·Eki·Ekj+constant) , where the relative weights 
of their contributions k are the corresponding eigenvalues. The 
contribution of each track to the total interaction frequency 
between a pair of regions in the corrected map Tij is proportional 
to a product of these preferences (Eki·Ekj). Eigenvectors are sorted 
(E1, E2, E3, …) in descending order by the magnitude of their 
corresponding eigenvalues. Our decomposition operates directly 
on corrected Hi-C data, unlike a previous method that makes  
several additional transformations of the data7. Permutation 
analysis shows that the first 13 eigenvectors are statistically signi-
ficant (P < 0.001). Moreover, the first three are robust between 
human data sets (Fig. 3e, Supplementary Fig. 7 and Online 
Methods) and explain 72% of the interchromosomal data recon-
structed from the first 13 eigenvectors. Thus, we focus on the 
first three eigenvectors for further analysis of interchromosomal  
interaction preferences.

The leading eigenvector, E1, provides a genomic track of inter-
chromosomal interaction preferences along the genome, and it 
shows correlation with many genomic features (Fig. 3a,b), includ-
ing GC content (r = 0.80, P < 10−10), replication timing (r = 0.82,  
P < 10−10, GEO GSM500943), DNase I hypersensitivity (r = 0.79,  
P < 10−10, GEO GSE4334) and many histone marks 
(Supplementary Table 1). The profile of E1 is similar to chromatin  
compartments found previously7, yet E1 shows higher correla-
tion with many genomic features17 both along the chromosomes 
and for average values of whole chromosomes (Fig. 3b; r = 0.95,  
P = 4 × 10−6, versus r = –0.31 for chromatin compartments 
reported previously, Supplementary Fig. 7).

Interaction preferences represented by E1 connect spatial and 
functional genomic organization, as regions with high E1, which 
are gene rich and enriched for active chromatin marks, tend to 

interact more with other similar regions (Fig. 3c). Conversely, 
gene-poor regions with low E1 tend to interact more with other 
gene-poor regions. Despite its tendency to partition active and 
inactive regions of the genome, E1 does not show any bimodality  
(Fig. 3d, top). Neighboring genomic regions display similar inter-
action preferences, as seen from the autocorrelation (Fig. 3d,  
bottom), which decays with a characteristic length of about 6 Mb. 
Taken together, these characteristics of E1 suggest that continuous  
interaction preferences better capture the complexity of chro-
matin interaction landscape at megabase resolution than does a 
two-compartment model7 proposed earlier.

Furthermore, we found evidence for the evolutionary conser-
vation of genome-wide chromosome organization by comparing  
E1 for human and mouse data sets. E1 has high correlation  
(r = 0.81, P < 10−10) in syntenic regions18 of human and mouse 
genomes at the megabase level (Fig. 4a). Moreover, the conserva-
tion of E1 cannot be explained by a confounding effect of similar 
GC content profiles, as demonstrated by a GC content–stratified 
permutation test (Fig. 4a, Online Methods).

We then studied the interaction preference tracks, E2 and E3, 
which constitute the greatest contributions to the corrected map 
after E1. Both E2 and E3 vary with position along chromosomal 
arms (Figs. 1e and 3f), with increased magnitude mostly near 
centromeres for E2 and near telomeres for E3. This pattern of 
interaction is prominent on average inter-arm maps, which 
reveal an enrichment of centromere-centromere and telomere-
telomere contacts (Fig. 4b and Supplementary Fig. 8). Average 
inter-arm maps constructed from projections of the data on E2 
and/or E3, but not E1, show a similar pattern of contact enrich-
ment, directly confirming that arm-level organization is largely 
captured by E2 and E3 (Supplementary Fig. 9). This pattern is 

Figure 2 | Iterative correction of Hi-C data. 
(a) Illustration of iterative correction using 
simulated data. Top, two specific interactions 
(shown by arches) within a chromosome; 
middle, its simulated Hi-C heatmap and a 
vector of random experimental visibility. Notice 
that visibility-induced noise obscures specific 
interactions. Bottom, iteratively corrected 
map of the chromosome in which visibility is 
equalized, revealing two specific interactions 
as bright spots on the heatmap. (b) Matrix of 
biases computed by Yaffe and Tanay16 at 1-Mb 
resolution (top) can be approximated by a 
product of bias vectors Bi × Bj (middle),  
yielding an essentially identical matrix of biases 
(r = 0.99), with their algebraic difference shown 
at the bottom in the same color scheme (see 
also Supplementary Fig. 5). (c) Comparison  
of intrachromosomal Hi-C maps obtained using 
the restriction enzymes HindIII and NcoI  
(200-kb resolution). The correlation is 
computed between off-diagonal regions of 
the map and plotted as a function of distance 
from the main diagonal—that is, the genomic 
separation—as shown in the inset. Analysis was 
performed on raw data (red), singly corrected 
(blue) and iteratively corrected (yellow). (d) Interchromosomal heatmaps: chromosome 1 versus chromosome 2, coarse-grained to 10 Mb, with contact 
frequencies shown by color for HindIII and NcoI before (top row) and after correction (bottom row) (also see Supplementary Fig. 6). (e) Left, cross-
validation for biases inferred from 10% versus 90% of the reads. Right, scaling of intrachromosomal contact probability with genomic distance,  
L, for Hi-C HindIII7 data, at 200-kb resolution, before (red) and after correction (yellow). Black line shows 1/L scaling reported previously7.
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of the genome inferred from Hi-C. More gen-
erally, a strong correlation was observed between
the number of Hi-C readsmij and the 3D distance
between locus i and locus j as measured by FISH
[Spearman’s r = –0.916, P = 0.00003 (fig. S3)],
suggesting that Hi-C read count may serve as a
proxy for distance.

Upon close examination of the Hi-C data, we
noted that pairs of loci in compartment B showed
a consistently higher interaction frequency at a
given genomic distance than pairs of loci in com-
partment A (fig. S4). This suggests that compart-
ment B is more densely packed (15). The FISH
data are consistent with this observation; loci in
compartment B exhibited a stronger tendency for
close spatial localization.

To explore whether the two spatial compart-
ments correspond to known features of the ge-
nome, we compared the compartments identified
in our 1-Mb correlation maps with known genetic
and epigenetic features. Compartment A correlates
strongly with the presence of genes (Spearman’s
r = 0.431, P < 10–137), higher expression [via
genome-wide mRNA expression, Spearman’s
r = 0.476, P < 10–145 (fig. S5)], and accessible
chromatin [as measured by deoxyribonuclease I
(DNAseI) sensitivity, Spearman’s r = 0.651, P
negligible] (16, 17). Compartment A also shows
enrichment for both activating (H3K36 trimethyl-
ation, Spearman’s r = 0.601, P < 10–296) and
repressive (H3K27 trimethylation, Spearman’s
r = 0.282, P < 10–56) chromatin marks (18).

We repeated the above analysis at a resolution
of 100 kb (Fig. 3G) and saw that, although the
correlation of compartment A with all other ge-
nomic and epigenetic features remained strong
(Spearman’s r > 0.4, P negligible), the correla-
tion with the sole repressive mark, H3K27 trimeth-
ylation, was dramatically attenuated (Spearman’s
r = 0.046, P < 10–15). On the basis of these re-
sults we concluded that compartment A is more
closely associated with open, accessible, actively
transcribed chromatin.

We repeated our experiment with K562 cells,
an erythroleukemia cell line with an aberrant kar-
yotype (19). We again observed two compart-
ments; these were similar in composition to those
observed in GM06990 cells [Pearson’s r = 0.732,

Fig. 4. The local packing of
chromatin is consistent with the
behavior of a fractal globule. (A)
Contact probability as a function
of genomic distance averaged
across the genome (blue) shows
a power law scaling between
500 kb and 7 Mb (shaded re-
gion) with a slope of –1.08 (fit
shown in cyan). (B) Simulation
results for contact probability as
a function of distance (1 mono-
mer ~ 6 nucleosomes ~ 1200
base pairs) (10) for equilibrium
(red) and fractal (blue) globules.
The slope for a fractal globule is
very nearly –1 (cyan), confirm-
ing our prediction (10). The slope
for an equilibrium globule is –3/2,
matching prior theoretical expec-
tations. The slope for the fractal
globule closely resembles the slope
we observed in the genome. (C)
(Top) An unfolded polymer chain,
4000 monomers (4.8 Mb) long.
Coloration corresponds to distance
from one endpoint, ranging from
blue to cyan, green, yellow, or-
ange, and red. (Middle) An equi-
librium globule. The structure is
highly entangled; loci that are
nearby along the contour (sim-
ilar color) need not be nearby in
3D. (Bottom) A fractal globule.
Nearby loci along the contour
tend to be nearby in 3D, leading
to monochromatic blocks both
on the surface and in cross sec-
tion. The structure lacks knots.
(D) Genome architecture at three
scales. (Top) Two compartments,
corresponding to open and closed
chromatin, spatially partition the
genome. Chromosomes (blue, cyan,
green) occupy distinct territories.
(Middle) Individual chromosomes
weave back and forth between
the open and closed chromatin
compartments. (Bottom) At the
scale of single megabases, the chromosome consists of a series of fractal globules.
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HDC model: biological implications
At the moment, the HDC simulations are 
entirely theoretical, and we are just complet-
ing a first round of experimental testing. It is 
nonetheless worth discussing their implica-
tions for a theory of cancer invasion, as the 
simulations are the result of a model built 
on mathematical foundations10 rooted in 
biologically reasonable assumptions.

In a concise sense, the HDC model pre-
dicts that cancer invasion is best explained 
in terms of the struggle between cancer cell 
phenotypes. At first glance, this appears to be 
not particularly novel, because the concept 
of clonal selection during cancer progres-
sion has been accepted for decades14. What 
is fundamentally new, however, is that the 
HDC model predicts that cancer cells form 
an invasive tissue because they are compet-
ing with each other, as opposed to invading 
as a consequence of mutations in key genes 
or a faulty signalling network, or because of 
intervening regulatory microenvironmental 
factors (see next section). When competi-
tion for resources or space becomes tough 
(harsh microenvironment), better adapted 
phenotypes win the competition and grow 
in an invasive pattern. If competition is low 
or absent (mild microenvironment), then 
similar, well-adapted phenotypes evolve but 
coexist with lesser adaptive ones and form a 
smooth-margined tumour.

Put another way, the HDC simulations 
lead to a novel hypothesis: a tumour is 
composed of individual cells, but it is their 
collective, rather than individual behaviour 

that determines the invasive property of the 
tumour. The HDC model is able to capture 
this emergent property because of its intrin-
sic multiscale nature: the tumour is repre-
sented as a population of individual cells, 
and invasion is an emergent property of the 
collective behaviour of this population at the 
tissue scale (FIG. 3). This is an alternative to 

the current invasive phenotype paradigm, in 
which invasion is the culmination of a linear 
cancer progression process.

There are at least three implications from 
these hypotheses and predictions that are 
relevant to the message of this Perspective. 
First, this is an excellent example of what 
mathematical modelling has to offer to 
cancer research: it is self-evident that this 
type of insight is difficult to produce and, 
perhaps most importantly, to validate, unless 
such quantitative systems approaches are 
used. Second, the simulation result points 
to experiments that would not otherwise be 
conceived. In fairness, clonal competition 
experiments between cancer cells were 
conducted in the 1980s15, but assessing the 
relevance of this process in the absence of 
quantitative computer simulations was diffi-
cult and the research was abandoned. Third, 
it exposes a gap in our knowledge, theoreti-
cal and experimental, of the mechanics and 
dynamics of cancer evolutionary processes.

Selective forces in the microenviron-
ment are known to exist, but they are not 
characterized in quantitative details, perhaps 
because their crucial importance in the 
specifics of cancer progression is not appre-
ciated. The behaviour of cells in response 
to these forces is also not difficult to accept, 
but again their potential to determine 
widely diverging outcomes is difficult to 
grasp intuitively. We submit that modelling 

Figure 2 | Cancer is multiscale. Changes at the genetic level lead to modified intracellular signal-
ling which causes changes in cellular behaviour and gives rise to cancerous tissue. Eventually, organs 
and the entire organism are affected. We propose that a focus on the cell as the fundamental unit 
of cancer naturally links molecular reductionism with quantitavive holism (qolism) (BOX 1).

 Box 2 | Mathematical modelling of cancer: a brief overview

There is a long tradition of mathematical models of tumour growth, ranging from simple 
temporal population dynamic models to full three-dimensional spatiotemporal models (see 
REF. 3 for a review). Over the past 10 years or so there has been a rapid growth in deterministic 
reaction–diffusion models that explicitly consider the tumour as a single continuous density 
varying in both space and time. Generally these have been used to model the spatial spread of 
tumours in the form of one-dimensional invading waves or as two-dimensional patterns of 
cancer cells2,32–42. Other numerical approaches have been considered43–45 but these still treat the 
tumour as a continuous mass. Although all these models are able to capture the tumour 
structure at the tissue scale, they fail to describe the tumour at the cellular level.
The development of single-cell-based modelling techniques provides such a description and 
allows one to easily model cell–cell and cell–microenvironment interactions (see REF. 5 for a 
review). Several different individual-based models of tumour growth have been developed 
recently, including cellular automata models1,10,11,46–53, Potts models54–56, agent-based models57 or 
lattice-free models58,59. Many of these models are also hybrid by definition and couple the 
advantages of individual-based models, representing cells, with continuous reaction–diffusion 
models that better represent environmental variables such as nutrients or tissue. Such hybrid 
models also allow one to link multiple models across multiple spatial scales, from genes to organ. 
The ability to bridge scales makes them ideal for cancer modelling as they effectively 
compartmentalize each scale and allow processes to bridge these compartments10,11,45,46,54,57,59. 
Therefore, these so-called multiscale models are far more accessible to the biologist both in terms 
of understanding and in terms of experimental validation.

Mathematical models of cancer are often complex and are unlikely to be amenable to standard 
mathematical analysis and therefore are nearly always solved by means of computational 
solution. Such computational solutions, either numerical or simulation-based, require a great 
deal of computing power (especially three-dimensional models, FIG. 5), which has only recently 
become widely available. It seems clear that we are now seeing the emergence of 
computational models as the dominant tool in mathematical models of cancer.

P E R S P E C T I V E S
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HDC model: biological implications
At the moment, the HDC simulations are 
entirely theoretical, and we are just complet-
ing a first round of experimental testing. It is 
nonetheless worth discussing their implica-
tions for a theory of cancer invasion, as the 
simulations are the result of a model built 
on mathematical foundations10 rooted in 
biologically reasonable assumptions.

In a concise sense, the HDC model pre-
dicts that cancer invasion is best explained 
in terms of the struggle between cancer cell 
phenotypes. At first glance, this appears to be 
not particularly novel, because the concept 
of clonal selection during cancer progres-
sion has been accepted for decades14. What 
is fundamentally new, however, is that the 
HDC model predicts that cancer cells form 
an invasive tissue because they are compet-
ing with each other, as opposed to invading 
as a consequence of mutations in key genes 
or a faulty signalling network, or because of 
intervening regulatory microenvironmental 
factors (see next section). When competi-
tion for resources or space becomes tough 
(harsh microenvironment), better adapted 
phenotypes win the competition and grow 
in an invasive pattern. If competition is low 
or absent (mild microenvironment), then 
similar, well-adapted phenotypes evolve but 
coexist with lesser adaptive ones and form a 
smooth-margined tumour.

Put another way, the HDC simulations 
lead to a novel hypothesis: a tumour is 
composed of individual cells, but it is their 
collective, rather than individual behaviour 

that determines the invasive property of the 
tumour. The HDC model is able to capture 
this emergent property because of its intrin-
sic multiscale nature: the tumour is repre-
sented as a population of individual cells, 
and invasion is an emergent property of the 
collective behaviour of this population at the 
tissue scale (FIG. 3). This is an alternative to 

the current invasive phenotype paradigm, in 
which invasion is the culmination of a linear 
cancer progression process.

There are at least three implications from 
these hypotheses and predictions that are 
relevant to the message of this Perspective. 
First, this is an excellent example of what 
mathematical modelling has to offer to 
cancer research: it is self-evident that this 
type of insight is difficult to produce and, 
perhaps most importantly, to validate, unless 
such quantitative systems approaches are 
used. Second, the simulation result points 
to experiments that would not otherwise be 
conceived. In fairness, clonal competition 
experiments between cancer cells were 
conducted in the 1980s15, but assessing the 
relevance of this process in the absence of 
quantitative computer simulations was diffi-
cult and the research was abandoned. Third, 
it exposes a gap in our knowledge, theoreti-
cal and experimental, of the mechanics and 
dynamics of cancer evolutionary processes.

Selective forces in the microenviron-
ment are known to exist, but they are not 
characterized in quantitative details, perhaps 
because their crucial importance in the 
specifics of cancer progression is not appre-
ciated. The behaviour of cells in response 
to these forces is also not difficult to accept, 
but again their potential to determine 
widely diverging outcomes is difficult to 
grasp intuitively. We submit that modelling 

Figure 2 | Cancer is multiscale. Changes at the genetic level lead to modified intracellular signal-
ling which causes changes in cellular behaviour and gives rise to cancerous tissue. Eventually, organs 
and the entire organism are affected. We propose that a focus on the cell as the fundamental unit 
of cancer naturally links molecular reductionism with quantitavive holism (qolism) (BOX 1).

 Box 2 | Mathematical modelling of cancer: a brief overview

There is a long tradition of mathematical models of tumour growth, ranging from simple 
temporal population dynamic models to full three-dimensional spatiotemporal models (see 
REF. 3 for a review). Over the past 10 years or so there has been a rapid growth in deterministic 
reaction–diffusion models that explicitly consider the tumour as a single continuous density 
varying in both space and time. Generally these have been used to model the spatial spread of 
tumours in the form of one-dimensional invading waves or as two-dimensional patterns of 
cancer cells2,32–42. Other numerical approaches have been considered43–45 but these still treat the 
tumour as a continuous mass. Although all these models are able to capture the tumour 
structure at the tissue scale, they fail to describe the tumour at the cellular level.
The development of single-cell-based modelling techniques provides such a description and 
allows one to easily model cell–cell and cell–microenvironment interactions (see REF. 5 for a 
review). Several different individual-based models of tumour growth have been developed 
recently, including cellular automata models1,10,11,46–53, Potts models54–56, agent-based models57 or 
lattice-free models58,59. Many of these models are also hybrid by definition and couple the 
advantages of individual-based models, representing cells, with continuous reaction–diffusion 
models that better represent environmental variables such as nutrients or tissue. Such hybrid 
models also allow one to link multiple models across multiple spatial scales, from genes to organ. 
The ability to bridge scales makes them ideal for cancer modelling as they effectively 
compartmentalize each scale and allow processes to bridge these compartments10,11,45,46,54,57,59. 
Therefore, these so-called multiscale models are far more accessible to the biologist both in terms 
of understanding and in terms of experimental validation.

Mathematical models of cancer are often complex and are unlikely to be amenable to standard 
mathematical analysis and therefore are nearly always solved by means of computational 
solution. Such computational solutions, either numerical or simulation-based, require a great 
deal of computing power (especially three-dimensional models, FIG. 5), which has only recently 
become widely available. It seems clear that we are now seeing the emergence of 
computational models as the dominant tool in mathematical models of cancer.
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HDC model: biological implications
At the moment, the HDC simulations are 
entirely theoretical, and we are just complet-
ing a first round of experimental testing. It is 
nonetheless worth discussing their implica-
tions for a theory of cancer invasion, as the 
simulations are the result of a model built 
on mathematical foundations10 rooted in 
biologically reasonable assumptions.

In a concise sense, the HDC model pre-
dicts that cancer invasion is best explained 
in terms of the struggle between cancer cell 
phenotypes. At first glance, this appears to be 
not particularly novel, because the concept 
of clonal selection during cancer progres-
sion has been accepted for decades14. What 
is fundamentally new, however, is that the 
HDC model predicts that cancer cells form 
an invasive tissue because they are compet-
ing with each other, as opposed to invading 
as a consequence of mutations in key genes 
or a faulty signalling network, or because of 
intervening regulatory microenvironmental 
factors (see next section). When competi-
tion for resources or space becomes tough 
(harsh microenvironment), better adapted 
phenotypes win the competition and grow 
in an invasive pattern. If competition is low 
or absent (mild microenvironment), then 
similar, well-adapted phenotypes evolve but 
coexist with lesser adaptive ones and form a 
smooth-margined tumour.

Put another way, the HDC simulations 
lead to a novel hypothesis: a tumour is 
composed of individual cells, but it is their 
collective, rather than individual behaviour 

that determines the invasive property of the 
tumour. The HDC model is able to capture 
this emergent property because of its intrin-
sic multiscale nature: the tumour is repre-
sented as a population of individual cells, 
and invasion is an emergent property of the 
collective behaviour of this population at the 
tissue scale (FIG. 3). This is an alternative to 

the current invasive phenotype paradigm, in 
which invasion is the culmination of a linear 
cancer progression process.

There are at least three implications from 
these hypotheses and predictions that are 
relevant to the message of this Perspective. 
First, this is an excellent example of what 
mathematical modelling has to offer to 
cancer research: it is self-evident that this 
type of insight is difficult to produce and, 
perhaps most importantly, to validate, unless 
such quantitative systems approaches are 
used. Second, the simulation result points 
to experiments that would not otherwise be 
conceived. In fairness, clonal competition 
experiments between cancer cells were 
conducted in the 1980s15, but assessing the 
relevance of this process in the absence of 
quantitative computer simulations was diffi-
cult and the research was abandoned. Third, 
it exposes a gap in our knowledge, theoreti-
cal and experimental, of the mechanics and 
dynamics of cancer evolutionary processes.

Selective forces in the microenviron-
ment are known to exist, but they are not 
characterized in quantitative details, perhaps 
because their crucial importance in the 
specifics of cancer progression is not appre-
ciated. The behaviour of cells in response 
to these forces is also not difficult to accept, 
but again their potential to determine 
widely diverging outcomes is difficult to 
grasp intuitively. We submit that modelling 

Figure 2 | Cancer is multiscale. Changes at the genetic level lead to modified intracellular signal-
ling which causes changes in cellular behaviour and gives rise to cancerous tissue. Eventually, organs 
and the entire organism are affected. We propose that a focus on the cell as the fundamental unit 
of cancer naturally links molecular reductionism with quantitavive holism (qolism) (BOX 1).

 Box 2 | Mathematical modelling of cancer: a brief overview

There is a long tradition of mathematical models of tumour growth, ranging from simple 
temporal population dynamic models to full three-dimensional spatiotemporal models (see 
REF. 3 for a review). Over the past 10 years or so there has been a rapid growth in deterministic 
reaction–diffusion models that explicitly consider the tumour as a single continuous density 
varying in both space and time. Generally these have been used to model the spatial spread of 
tumours in the form of one-dimensional invading waves or as two-dimensional patterns of 
cancer cells2,32–42. Other numerical approaches have been considered43–45 but these still treat the 
tumour as a continuous mass. Although all these models are able to capture the tumour 
structure at the tissue scale, they fail to describe the tumour at the cellular level.
The development of single-cell-based modelling techniques provides such a description and 
allows one to easily model cell–cell and cell–microenvironment interactions (see REF. 5 for a 
review). Several different individual-based models of tumour growth have been developed 
recently, including cellular automata models1,10,11,46–53, Potts models54–56, agent-based models57 or 
lattice-free models58,59. Many of these models are also hybrid by definition and couple the 
advantages of individual-based models, representing cells, with continuous reaction–diffusion 
models that better represent environmental variables such as nutrients or tissue. Such hybrid 
models also allow one to link multiple models across multiple spatial scales, from genes to organ. 
The ability to bridge scales makes them ideal for cancer modelling as they effectively 
compartmentalize each scale and allow processes to bridge these compartments10,11,45,46,54,57,59. 
Therefore, these so-called multiscale models are far more accessible to the biologist both in terms 
of understanding and in terms of experimental validation.

Mathematical models of cancer are often complex and are unlikely to be amenable to standard 
mathematical analysis and therefore are nearly always solved by means of computational 
solution. Such computational solutions, either numerical or simulation-based, require a great 
deal of computing power (especially three-dimensional models, FIG. 5), which has only recently 
become widely available. It seems clear that we are now seeing the emergence of 
computational models as the dominant tool in mathematical models of cancer.
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respectively) freely diffused in the nucleus, whereas
2,000-kDa dextrans were essentially immobile65.
Fluorescence recovery after photobleaching (FRAP)
experiments (BOX 1) indicate ‘homogeneous’movement
of proteins at all nuclear sites, including bleached CTs60.
This finding clearly indicates that proteins can move
‘through’CTs. The IC concept requires that individual
nuclear proteins or small protein complexes roam the
entire interchromatin space (IC plus the interior of
compact chromatin domains). By contrast, diffusion of
larger (sub-) complexes should be constrained to the IC.
Interchromatin channels that expand through CTs28

should even allow channelled movements of such com-
plexes through the CTs. Experiments based on fluores-
cence microscopy at present lack the resolution to 
support or disprove the IC concept.

The CT–IC model
Chromosome territories and the IC provide the funda-
mental components of the CT–IC model of a functional
nuclear architecture.We first consider the essential fea-
tures of this model and then (circumstantial) supporting
evidence.The hypothesis that partial transcription com-
plexes are pre-established in, and that their diffusion is
restricted to, the IC has an important consequence: to
fulfil its role as a functionally defined compartment, the
IC requires a specific topology of transcriptionally active
genes. Regulatory and coding sequences of these active
genes can interact with the transcription machinery only
when they are positioned at the surface of chromatin
domains that line the IC, or on chromatin loops that
extend into the IC (FIG. 1e,f). The argument can be
extended to genes that are subject to short-term inactiva-
tion, the expression of which needs to be rapidly upregu-
lated. By contrast, long-term or permanently silenced
genes should be located within the interior of compact
chromatin domains that are inaccessible to the transcrip-
tion machinery,according to this model. In more general
terms, genes that require long-term silencing should be
physically separated from permanently active genes to an
extent that allows their positioning in different chro-
matin compartments. Chromatin remodelling events
that result in the positioning of genes into proper
nuclear compartments are considered an essential part
of gene-activation and gene-silencing mechanisms.

So much for the predictions of the CT–IC model.
What about experimental evidence to support the
model? In a first version of the CT–IC model, CTs were
considered as compact objects with a smooth envelop-
ing surface and it was assumed that an interchromatin-
domain compartment expanded between these smooth
CT surfaces and was excluded from the entire CT inte-
rior66. Accordingly, it was predicted that genes could
only be transcribed when they were located at the CT
periphery in contact with the IC. However, contrary to
this prediction, transcription and splicing was observed
not only at the periphery but also in the interior of
CTs27,67,68. Concomitantly, more detailed experimental
studies of CT architecture showed that CTs have a com-
plex, folded structure that results in a largely expanded
surface with IC channels that penetrate into the CT

branches between ~1-Mb and ~100-kb chromatin-loop
domains (FIG. 1 and see below).We propose that surfaces
of compact chromatin domains provide a functionally
relevant barrier, which can be penetrated by single pro-
teins or small protein aggregates, but not by larger
macromolecular complexes above a certain threshold
size. The IC (by definition) does not comprise the addi-
tional interchromatin space present between chromatin
fibres in the interior of compact chromatin domains
(FIG. 7c, see below).We further propose that spliced RNA
can be complexed with proteins and exported to the
nuclear pores in the IC space, thus preventing the
entangling of RNA that is produced in the interior of
compact chromatin domains.

A critical evaluation of the IC concept requires a
detailed analysis of the movements of macromolecules
and complexes in the nucleus. The kinetic and thermo-
dynamic aspects of these studies support passive diffu-
sion as the decisive mechanism that is responsible for
the movement of factors and factor complexes60,62. The
conditions that influence these movements (such as
transient binding to immobile obstacles) have not yet
been fully determined63,64. Microinjection of size-frac-
tionated fluorescein isothiocyanate (FITC) dextrans
into HeLa cell nuclei showed that 70- and 580-kDa dex-
trans (equivalent to DNA sizes of 106 and 878 bp,

CHROMATIN FIBRES
These 30-nm fibres are
produced by the compaction 
of 10-nm nucleosome fibres.
Nucleosome fibres are visible
under the electron microscope
after treatments that unfold
higher-order chromatin
packaging into a ‘beads-on-a-
string’10-nm diameter form.

MICRODISSECTION PROBES
DNA probes established from
microdissected chromosomal
subregions. The probes are
useful for the labelling of
chromosome arms and bands.
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Figure 3 | Features of human chromosome territories. a | Two-colour painting of the p-arm
(red) and the q-arm (green) of human chromosome 1 in a lymphocyte metaphase spread. 
b | Visualization of the two arms in a light optical section through a human diploid fibroblast
nucleus (bottom) shows two distinct, mutually exclusive arm domains20. ( Image courtesy of
Steffen Dietzel). c | Painting of the human X chromosome (red) and several distal bands of its
p-arm and q-arm (green) using MICRODISSECTION PROBES20. d | Visualization of the active and
inactive X-chromosome territories (Xa and Xi, respectively) together with the respective distal-
band domains in a light optical section through a female human fibroblast nucleus. (Image
courtesy of Joachim Karpf and Irina Solovei). e | Three-dimensional reconstructions of the Xa
and Xi territories from a human female fibroblast nucleus (Reproduced with permission from
REF. 22). The three-dimensional positions of the ANT2 and ANT3 (adenosine nucleotide
translocase) genes are noted as green and blue spheres, respectively. Note that active ANT
genes can be seen at the territory surface (two on Xa and one on Xi). The white box provides 
a transparent view of the Xi territory (pink), indicating the location of the inactive ANT2 gene in
the territory interior. f | Three-dimensonal reconstructions of two chromosome-17 territories,
established from light optical serial sections through a human diploid fibroblast nucleus, 
show complex territory surfaces. (Image courtesy of Irina Solovei.)
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Conclusion	
  &	
  outlook	
  
• We	
  hypothesized	
  a	
  physical	
  principle	
  that	
  might	
  govern	
  global	
  
organiza2on	
  of	
  chroma2ns.	
  

• And	
  we	
  proved	
  it	
  using	
  MD	
  simula2ons	
  &	
  FRET	
  experiments.	
  

• Our	
  hypothesis	
  is	
  consistent	
  with	
  well	
  known	
  facts	
  such	
  as	
  

• AT-­‐content-­‐dependent	
  compac2on	
  of	
  chroma2n.	
  

• Methyla2on-­‐induced	
  compac2on	
  

• Further,	
  we	
  need	
  to	
  prove	
  our	
  hypothesis	
  for	
  more	
  realis2c	
  
chroma2n	
  fiber	
  &	
  in	
  the	
  presence	
  of	
  nuclear	
  envelope	
  in	
  vivo.	
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