pLUt WATERS

SUSTAINED PETASCALE COMPUTING

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Motivation

* We need a common way of presenting
performance results on Blue Waters!
* Different applications
- Different needs
» Different metrics
* Different architecture
« GPU vs CPUs

* How to present performance results correctly?
* How to report scalability correctly?

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

“Twelve Ways to Fool the Masses When Giving

Performance Results on Parallel Computers”

David H. Bailey, Supercomputing Review, August 1991, p. 54-55
Quote only 32-bit performance results, not 64-bit results.

Present performance figures for an inner kernel, and then represent these
figures as the performance of the entire application.

Quietly employ assembly code and other low-level language constructs.

Scale up the problem size with the number of processors, but omit any mention of this fact.
Quote performance results projected to a full system.

Compare your results against scalar, unoptimized code on Crays.

When direct run time comparisons are required, compare with old code on

If MFLOPS rates must be quoted, base the operation count on the parallel implementation,
not on the best sequential implementation.

9. Quote performance in terms of processor utilization, parallel speedups or MFLOPS per
dollar.

10. Mutilate the algorithm used in the parallel implementation to match the architecture.

11. Measure parallel run times on a dedicated system, but measure conventional run times in a
busy environment.

12. If all else fails, show pretty pictures and animated videos, and don't talk about performance.

N —

© N O OA W

Scalability matters!

'SOMP PARALLEL DO
do k =1 , Nk
do j=1, Nj; doi=1, Ni
v(i,7,k)= b¥*(x(i-1,3,k)+ x(i+1,j,k)+ x(i,3-1,k)+
X(i,j+1,k)+ X(i,j,k-1)+ X(i,j,k'l'l))

enddo; enddo
enddo

Is this the maximuM'

performance ?!

1500 | , |

S
g
b —

3D Stencil Update
("Jacob1")

Performance [MLUP/s]

R :
p— 1 — | -

#cores
*Slide from Gerhard Wellein, Georg Hager : http://blogs.fau.de/hager/files/2013/06/2013-06-20-ISC13-FTM.pdf

B I_ U E WAI [H S AN GREAT LAKES CONSORTIIN PR

SUSTAINED PETASCALE COMPUTING

Speedup and Scalability

« Speedup:

time with 1 process
S(P) =

time with P processes

e Scalability: relative effectiveness with which

parallel algorithm can utilize additional
pProcessors

* Good scalability: Linear scalability

S(P)=P

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Scalability?

* Why use more processors?

solve given problem in less time
solve larger problem in same time

obtain sufficient memory to solve given (or larger)
problem

solve ever larger problems regardless of execution
time

- Keep some quantity constant as number of
Processors increases

serial work = Strong scaling
serial work per processor - Weak scaling

B I_ U E WAI [H S AN GREAT LAKES CONSORTIIN PR

SUSTAINED PETASCALE COMPUTING

Strong Scaling

« Strong Scaling:

Number of Time | Speedup | Ideal o5 ooor

cores (sec) 3 8005

20,000 1003 5 °F

40,000 484 2.07 2 3 400}

80,000 251 1.93 2 g

96,000 209 | 1.20 1.2 .

120,000 167 | 1.25 125 | & | e

20 0 80 100 120 140

Numb?r of corgs (x1000)
Strong scaling results of the kinetic code. The green line shows
ideal performance. The red circles are observed time.

B I_ U E WAI [H S AN GREAT LAKES CONSORTIIN PR

SUSTAINED PETASCALE COMPUTING

Weak Scaling

Weak Scaling:

< 250
Number of Time §
cores (sec) £ 200F
20,000 164 S 150 —0— ——%——
40,000 159 ° |
. ? 100}

80,000 168 g |
96,000 177 £ 5o
120,000 167 20 4ielumber of cores (x‘? 880) T 40

Weak scaling results of the kinetic code

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

TODO 1: Report Both Scaling

« Report both Strong scaling and Weak scaling of
your code.

» Define what the scaling unit means.
* Tasks,
°* cores,
* sockets,
* nodes, ...

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

TODO 2: Define your Sequential Code

« Should compare all parallel speedups to
sequential code

* Define exactly what sequential means

- Ifitis a parallel implementation that only uses 1
task, please be clear.

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

TODO 3: Speedup of which part?

* Define how do you measure speedup
* |s it for the entire code?

* If a subset, explain the contribution of that subset
to the overall run time

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

TODO 4: Be clear in changes

* When comparing from an older technology to a
new technology, be very clear on the

contributions for the architectural and technology
changes.

« Well describe all systems with references — not
just nodes but other things

» This also holds if you migrate from one platform
to other platform.

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

TODO 5: Selection of resulis

* Explain how the result was selected.
» Best of all runs?
 Average of all runs?
* Worst case?

* |n case of comparing with some other code, make
sure comparisons are fair.

* Don’t compare your best case with others’ worst
case

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

TODO 6: Define App-specific metrics

» Define application specific metrics
« Simulation time unit/real time unit,
 days/hour,

* ns/minute

* Explain them and say why do you choose that
metric

» Explain what range of that metric is better

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

TODO 7: Define time unit clearly

* Define time unit clearly — how measured — wall
clock time is the preferred

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

TODO 8: Note Use of Fancy Features
* |If you are using fancy features (e.g. topology

aware mapping) make sure you note what they
are and how different it is

* How the options on the software are set?
» Whether using options that are not available.

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

TODO 9: Correct Comparison

* You can compare very basic ported case and

very aggressive optimization with different
compilers

* But do not compare between.

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

TODO 10: Error Bars

* On a big platform such as Blue Waters, there are
sources of variability in performance!

* |t would be great to run your code several times
and show us an error bar

* |t would be nice to explain what are these sources
of variability in your code.

* Don’t blame everything on OS jitter or 1/O
subsystem please!

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Never TODO 1: Just Reporting Speedup

180 45
160 40
Absolute performance Speedup
140 a5
120 30
100 25
80 20
60 15
40 10
) /‘// ‘
0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
~8—NEC —+—Cluster Workers ~®~NEC —4—Cluster Workers

* |If one wants to sell “Cluster”, he/she can easily
just show the plot on right!

*Slide from Gerhard Wellein, Georg Hager :_http://blogs.fau.de/hager/files/2013/06/2013-06-20-ISC13-FTM.pdf

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Never TODO 2: Mix Strong scaling with Weak
scaling

- Bailey’'s #4: “Scale up the problem size with the
number of processors, but omit any mention of
this fact.”

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Never TODO 3: Use Log-scale unless necessary!

70

100
60
50
40
10
30
20
10
o 1
0 10 20 0 40 50 0 70 ! 0 100

—— Speedup — ldeal == Speedup -~ ldeal

» Log-scale shows a linear speedup on the plot on
right!
*Slide from Gerhard Wellein, Georg Hager :_http://blogs.fau.de/hager/files/2013/06/2013-06-20-ISC13-FTM.pdf

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Never TODO 4: Ignore affinity and other
architectural featureterrs

*Dual-socket AMD-Opteron
*4x channel 1600 DDR3 memory
*High speed HT3 network link
*Upgradeable

*Blend with XK6 GPU systems

* Multicore
« Cache groups .

» L2/L3 caches il W i
« SMT
* Network hierarchies
« Shared FP units

Memory Bandwidth (Peak) 102.4 GB/sec

BLUE WATERS H 85 G I R

SUSTAINED PETASCALE COMPUTING

Never TODO 5: Unfair GPU vs. CPU
comparison

How to tell the 200x GPGPU speed-up story

“Numerically . et)
mpiler
sensitive code: Does compiie
continue to assume,

not require ECC!”)
. ; that you use pointer *
aliasing”

Dense
Matrix-Vector-
Multiplication (N=4500)

@ -
g i

2 : or —00”
o

10 5
H 2.45
“Our CPU code is 0 | it 112 0.28
based on double o ot g @ v 5 S
g S g S] 8 ?
precision and hard & & ~ ~ - @ o
” & S o - o e S
to change 2 2 S - = 8 -
[-% Q. o) - a — a.
(G} (G} Q. a o a o
“ &
. o
; Disable § >
ghaglge fron'1 §|ngltle)2;¢_elclsmn to SIMD Bad compiler
ouble precision () switch

ttp://blogs.fau.de/hager/files/2013/06/2013-06-20-ISC13-FTM.pdf

*Slide from Gerhard Wellein, Georg Hager : h

