
Performance Report Guidelines

Babak Behzad, Alex Brooks, Vu Dang
12/04/2013

Motivation
•  We need a common way of presenting

performance results on Blue Waters!
•  Different applications

•  Different needs
•  Different metrics
• …

•  Different architecture
•  GPU vs CPUs

•  How to present performance results correctly?
•  How to report scalability correctly?

“Twelve Ways to Fool the Masses When Giving
Performance Results on Parallel Computers”

1.  Quote only 32-bit performance results, not 64-bit results.
2.  Present performance figures for an inner kernel, and then represent these

figures as the performance of the entire application.
3.  Quietly employ assembly code and other low-level language constructs.
4.  Scale up the problem size with the number of processors, but omit any mention of this fact.
5.  Quote performance results projected to a full system.
6.  Compare your results against scalar, unoptimized code on Crays.
7.  When direct run time comparisons are required, compare with old code on
8.  If MFLOPS rates must be quoted, base the operation count on the parallel implementation,

not on the best sequential implementation.
9.  Quote performance in terms of processor utilization, parallel speedups or MFLOPS per

dollar.
10.  Mutilate the algorithm used in the parallel implementation to match the architecture.
11.  Measure parallel run times on a dedicated system, but measure conventional run times in a

busy environment.
12.  If all else fails, show pretty pictures and animated videos, and don't talk about performance.

David	
 H.	
 Bailey,	
 Supercompu)ng	
 Review,	
 August	
 1991	
 ,	
 p.	
 54-­‐55	

1. Scalability!

*Slide	
 from	
 Gerhard	
 Wellein,	
 Georg	
 Hager	
 :	
 h:p://blogs.fau.de/hager/files/2013/06/2013-­‐06-­‐20-­‐ISC13-­‐FTM.pdf	

Speedup and Scalability

•  Speedup:
!!!! ! ! !"#$!!"#!!!!!"#$%&&!"#$!!"#!!!!!"#$%&&!"!

•  Scalability:	
 rela)ve	
 effec)veness	
 with	
 which	

parallel	
 algorithm	
 can	
 u)lize	
 addi)onal	

processors	

•  Good	
 scalability:	
 Linear	
 scalability	

Scalability?

•  Why use more processors?
•  solve given problem in less time
•  solve larger problem in same time
•  obtain sufficient memory to solve given (or larger)

problem
•  solve ever larger problems regardless of execution

time
•  Keep some quantity constant as number of

processors increases
•  serial work à Strong scaling
•  serial work per processor à Weak scaling

Strong Scaling

•  Strong Scaling:

Strong scaling results of the kinetic code. The green line shows
ideal performance. The red circles are observed time.

Weak Scaling

•  Weak Scaling:

Weak scaling results of the kinetic code

TODO 1: Report Both Scaling
•  Report both Strong scaling and Weak scaling of

your code.

•  Define what the scaling unit means.
•  Tasks,
•  cores,
•  sockets,
•  nodes, …

TODO 2: Define your Sequential Code

•  Should compare all parallel speedups to
sequential code
•  Define exactly what sequential means
•  If it is a parallel implementation that only uses 1

task, please be clear.

TODO 3: Speedup of which part?

•  Define how do you measure speedup
•  Is it for the entire code?
•  If a subset, explain the contribution of that subset

to the overall run time

TODO 4: Be clear in changes

•  When comparing from an older technology to a
new technology, be very clear on the
contributions for the architectural and technology
changes.
•  Well describe all systems with references – not

just nodes but other things
•  This also holds if you migrate from one platform

to other platform.

TODO 5: Selection of results

•  Explain how the result was selected.
•  Best of all runs?
•  Average of all runs?
•  Worst case?

•  In case of comparing with some other code, make
sure comparisons are fair.
•  Don’t compare your best case with others’ worst

case

TODO 6: Define App-specific metrics

•  Define application specific metrics
•  Simulation time unit/real time unit,
•  days/hour,
•  ns/minute

•  Explain them and say why do you choose that
metric

•  Explain what range of that metric is better

TODO 7: Define time unit clearly

•  Define time unit clearly – how measured – wall
clock time is the preferred

TODO 8: Note Use of Fancy Features

•  If you are using fancy features (e.g. topology
aware mapping) make sure you note what they
are and how different it is

•  How the options on the software are set?
•  Whether using options that are not available.

TODO 9: Correct Comparison

•  You can compare very basic ported case and
very aggressive optimization with different
compilers

•  But do not compare between.

TODO 10: Error Bars

•  On a big platform such as Blue Waters, there are
sources of variability in performance!

•  It would be great to run your code several times
and show us an error bar
•  It would be nice to explain what are these sources

of variability in your code.
•  Don’t blame everything on OS jitter or I/O

subsystem please!

Never TODO 1: Just Reporting Speedup

•  If one wants to sell “Cluster”, he/she can easily
just show the plot on right!

*Slide	
 from	
 Gerhard	
 Wellein,	
 Georg	
 Hager	
 :	
 h:p://blogs.fau.de/hager/files/2013/06/2013-­‐06-­‐20-­‐ISC13-­‐FTM.pdf	

Never TODO 2: Mix Strong scaling with Weak
scaling

•  Bailey’s #4: “Scale up the problem size with the
number of processors, but omit any mention of
this fact.”

*Slide	
 from	
 Gerhard	
 Wellein,	
 Georg	
 Hager	
 :	
 h:p://blogs.fau.de/hager/files/2013/06/2013-­‐06-­‐20-­‐ISC13-­‐FTM.pdf	

Never TODO 3: Use Log-scale unless necessary!

•  Log-scale shows a linear speedup on the plot on
right!

*Slide	
 from	
 Gerhard	
 Wellein,	
 Georg	
 Hager	
 :	
 h:p://blogs.fau.de/hager/files/2013/06/2013-­‐06-­‐20-­‐ISC13-­‐FTM.pdf	

Never TODO 4: Ignore affinity and other
architectural features

•  Multicore
•  Cache groups

•  L2/L3 caches
•  NUMA
•  SMT
•  Network hierarchies
•  Shared FP units

Never TODO 5: Unfair GPU vs. CPU
comparison

*Slide	
 from	
 Gerhard	
 Wellein,	
 Georg	
 Hager	
 :	
 h:p://blogs.fau.de/hager/files/2013/06/2013-­‐06-­‐20-­‐ISC13-­‐FTM.pdf	

