pLUt WATERS

SUSTAINED PETASCALE COMPUTING

BLUE WATERS H 85 G I R

SUSTAINED PETASCALE COMPUTING

|/O For Science!

|) I/O Library PnetCDF

I/O
Application Middleware

Scientist

DEINEILS

Parallel File
System

Blue Waters

~BLUE WATERS &,

SUSTAINED PETA SCALE COMPUTING

Where the BW I/O Team Can Help

§e
b

ﬁx

BLUE WATERS H 85 G I R

SUSTAINED PETASCALE COMPUTING

This Talk

I/O Library PnetCDF

MPI-10

I/O
Scientist Application Middleware

DEIMEIS

Lustre

Darshan

Parallel File
System

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

PARALLEL I/O

Lustre

BLUE WATERS [s A s s CrRase

SUSTAINED PETASCALE COMPUTING

Common I/O Usage

* Checkpoint files |
- Wirie-close

« Size varies
* Must be written to disk

* Log / history / state files
* Simple appends licit b
- Small writes (~kb - ~MB) management or
« Can be buffered

* Write-read not very common

* Use alibrary

B I_ U [WAI E H S AN GREAT LAKES CONSORTIIN PR

SUSTAINED PETASCALE COMPUTING

Available File Systems

* home a
- 2.2PB
' 1_TB quota | . Three separate file systems

* project . Three separate metadata servers
1 22PB . User operations in home won't
* 3TB quota interfere with application 10

* scratch - Project space controlled by the PI
- 22 PB
- 500 TB quota

BLUE WAT[HS Roir L G0N e

Application 1/O: Big Picture Considerations

 Maximize both client I/0 and communication
bandwidth (without breaking things)

« Minimize management of an unnecessarily large
number of files

* Minimize costly post-processing
» Exploit parallelism in the file system
» Maintain portability

BLUE WATERS [s A s s CrRase

SUSTAINED PETASCALE COMPUTING

Large Scale I/O in Practice

« Serial I/O is limited by both the 1/O bandwidth of a single
process as well as that of a single OST

- Two ways to increase bandwidth:

SUSTAINED PETASCALE COMPUTING

File-Per-Process

« Each process performs 1/O on its own file

* Advantages
« Straightforward implementation
« Typically leads to reasonable bandwidth quickly
* Disadvantages
« Limited by single process
 Difficulty in managing a large number of files
« Likely requires post processing to acquire useful data
« Can be taxing on the file system metadata and ruin everybody’s day

BLUE WATERS {5 B s cmese

SUSTAINED PETASCALE COMPUTING

Shared-File

 There is one, large file shared among all processors which
access the file concurrently

- Advantages

« Results in easily managed data that is useful with minimal
preprocessing

- Disadvantages
- Likely slower than file-per-process, if not used properly
- Additional (one-time!) programing investment

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Lusire File System: Striping

Physical
Logical
——— e

* File striping: single files are distributed across a
series of OSTs

* File size can grow to the aggregate size of available
OSTs (rather than a single disk)

* Accessing multiple OSTs concurrently increases |/O
bandwidth

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Performance Impact: Configuring File Striping

« 1fs is the Lustre utility for viewing/setting file striping info
« Stripe count — the number of OSTs across which the file can be striped
- Stripe size — the size of the blocks that a file will be broken into

- Stripe offset — the ID of an OST for Lustre to start with, when deciding
which OSTs a file will be striped across

- Configurations should focus on stripe count/size

* Blue Waters defaults:
$> touch test
$> 1fs getstripe test

test
lmm stripe count: 1
lmm stripe size: 1048576
lmm stripe offset: 708
obdidx objid objid group

708 2161316 Ox20faad 0

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Setting Striping Patterns

$> 1fs setstripe -c 5 -s 32m test
$> 1fs getstripe test

test
lmm stripe count: 5
lmm stripe size: 33554432
lmm stripe offset: 1259
obdidx objid objid group
1259 2162557 O0x20ff7d 0
1403 2165796 0x210c24 0
955 2163063 0x210177 0
1139 2161496 0x20fb58 0
699 2161171 O0x20fal3 0

* Note: afile’s striping pattern is permanent, and set upon creation
- 1fs setstripe creates a new, 0 byte file

« The striping pattern can be changed for a directory; every new file or directory
created within will inherit its striping pattern

- Simple API available for configuring striping — portable to other Lustre systems

“BLUE WATERS

SUSTAINED PETASCALE COMPUTING

I GREAT LAKES CONSORTIIN - PR

Striping Case Study

« Reading 1 TB input file using 2048 cores

Function Stripe Count=1 Stripe Count = 64 Improvement
Total 4551.620s 268.209s 94.1%
loadKernel 4296.118s 85.331s 98.0%
loadDamp 33.767s 6.144s 81.8%
loadDamp_bycol 30.085s 5.712s 81.0%

* Code is now CPU bound instead of /O bound

* Optimization “effort”. 1fs setstripe —-c 64

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Striping, and You

* When to use the default stripe count of 1

« Serial I/0O or small files

* Inefficient use of bandwidth + overhead of using multiple OSTs
will degrade performance D & & O @

* File-per-process I/O Pattern =« w & w0

» Each core interacting with a single OST reduces network costs
of hitting OSTs (which can eat your lunch at large scales)

« Stripe size is unlikely to vary performance unless
unreasonably small/large

* Erron the side of small
 This helps keep stripes aligned, or within single OSTs
* Can lessen OST traffic

« Default stripe size should be adequate

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

« Large shared files: : : : : g
* Processes ideally access exclusive file regions
« Stripe size iS
* Application dependent

« Should maximize stripe alignment (localize a process to an OST to reduce
contention and connection overhead)

« Stripe count

* Should equal the number of processes performing I/0O to maximize 1/O
bandwidth
» Blue Waters contains 1440 OSTs, the maximum possible for file stripe count is
currently 160 (likely to increase soon pending a software update)
S> 1fs osts
OBDS
0: snx11001-0ST0000 UUID ACTIVE
1: snx11001-0ST0001 UUID ACTIVE
1438: snx11003-0ST05%9e UUID ACTIVE
1439: snx11003-0ST059f UUID ACTIVE

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

And the Winner is... Neither?

- Both patterns increase bandwidth through the addition of 1/O
processes

* There are a limited number of OSTs to stripe a file across

* The likelihood of OST contention grows with the ratio of I/O
processes to OSTs

« Eventually, the benefit of another I/O process is offset by added
OST traffic

* Both routinely use all processes to perform 1/O

* A small subset of a node’s cores can consume a node’s I/O
bandwidth

 This is an inefficient use of resources

 The answer? It depends... but,
- Think aggregation, a la file-per-node

BLUE WATERS H 85 G I R

SUSTAINED PETASCALE COMPUTING

|/O Delegates

* Advantages

* More control - customize per job size
* Ex: One file per node, one file per OST

» Disadvantages
 Additional (one-time!) programing investment

BLUE WATERS ok S G ORI CFRAS

SUSTAINED PETASCALE COMPUTING

/O MIDDLEWARE

Damaris, MPI-IO & IOBUF

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Why use I/O Middleware?

Derived data types
Easy to work with shared files

Derived types + shared files

- Data is now a series of objects, rather than a
number of files

* On restart from checkpoint, the number of
processors need not match the number of files

Easy read-write of non-contiguous data
* Optimizations possible with little effort

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

|/O Middleware: Damaris

Damaris -- Dedicated Adaptable Middleware for Application
Resources Inline Steering

« Started in 2010 by Matthieu Dorier during an internship at
NCSA
* The purpose: decouple I/O and computation to enable
scalable asynchronous /O
» The approach: dedicated I/O core(s) on each node
* Limits OST contention to the node level
- Leverages shared memory for efficient interaction

 \When simulation “writes” data, Damaris utilizes shared
memory to effectively aggregate writes to the “right” size

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Application: Reducing I/O lJitter in CM1

 |/O Jitter is the variability in I/O operations that
arise from any number of common interferences

- CM1
« Atmospheric simulation
* Current Blue Waters allocation
« Uses serial and parallel HDF5

B I_ U [WAI E H S AN GREAT LAKES CONSORTIIN PR

SUSTAINED PETASCALE COMPUTING

How Damaris Helps with 1/O lJitter

Core 1 Core 2 Core 3 Core 4 Core 1 Core 2 Core3 Damaris
4 4
Compute<
Compute<
>
Wiite< N“ 5 Push (IPC)-ﬁ NWENEXNY .
(0]
> | Barrier p P;ﬁgess
> Write
Compute< (file)
Compute< /
\.
\ \

o Jitter is “moved” to the dedicated core

« Even with the reduction in number of cores performing computation,
performance is not adversely affected, in fact....

BLUE WATERS

SUSTAINED PETASCALE COMPUTING

{{E} A GREAT LAKES CONSORTIIN - CSFR Ay

How Damaris Helps CM1

1000 10000
,I
__ 800 £ 8000 7
§ g /' === Perfect scaling
>y 600 E 6000 ’ P/
E = W7 —&—Damaris
< 400 3 4000 P
2 S 7
200 - Y 5000 // File-per-process
0 0 - T . =& Collective-1/0
576 2304 9216 0 5000 10000

Number of cores

In these runs, Damaris spent at least
75% its time waiting!

A plugin system was implemented such
that this time may be used for other

tasks — We are collaborating with the
developer to identify alternate uses.

Number of cores

T
Weak scalability factor: § = N —2ase

N: number of cores
Tyase: time of an iteration on one core w/ write
T: time of an iteration + a write

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

|/O Middleware: MPI-IO

« MPI standard’s implementation of collective 1/O (shared-file)

- Afile is opened by a group of processes, partitioned among them, and I/O
calls are collective among all processes in the group

* Files are composed of native MPI data types
* Non-collective I/O is also possible

« Uses collective buffering to consolidate I/O requests

- All data is transferred to a subset of processes and aggregated

« Use MPICH_MPIIO_CB_ALIGN=2 to enable Cray’s collective buffering
algorithm

» automatic Lustre stripes alignment & minimize lock contention
* May not be beneficial when writing small data segments
» Verified to deliver 25% improvement on BlueWaters for a 1000 rank job

« Use MPICH_MPIIO_XSTATS [0, 1, 2] to obtain MPI-IO statistics

/O optimizations in high level libraries are often implemented here —
be sure any monkeying is careful monkeying

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Collective Buffering (1)

- Exchange metadata

PEOD PE 1 PE2 PE 3
User
Space | uUser Data User Data User Data User Data
Library (RS Metadata Metadata Metadata
Space

Aggregator 0 Agaregator 1

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Collective Buffering (2)

« Copy user/application data

PEO PE 1 PE 2 PE3
Agaregator 0 Aggregator 1
User [] User Data — UserData | User Data] UserData

Metadata Metadata

BLUE WATERS

{{E} A GREAT LAKES CONSORTIIN - CSFR Ay

SUSTAINED PETASCALE COMPUTING

Collective Buffering (3)

« Aggregators write to disk

SSSSS

B I_ U E WAI [H S AN GREAT LAKES CONSORTIIN PR

SUSTAINED PETASCALE COMPUTING

Tuning MPI-10: CB Hints

 Hints are specified in application code [MPI Info set ()]or
as environment variables (MPICH MPIIO HINTS)

 Collective buffering hints

| Hint | Descripton | Default _

cb buffer size setthe maximum size of a single I/0O operation 4MB
cb_nodes set maximum number of aggregators stripe count of file

romio_cb_read

) i enable or disable collective buffering automatic
romio_cb_write

* if true, MPI-10 knows all I/O is collective

romio_no_indep_rw * Only aggregators will open files talse
cb_config_list a list of independent configurations for nodes N/A
striping_factor Specifies the number of Lustre stripes File system
striping_unit Specifies the size of the Lustre stripe File system

BLUE WATERS

SUSTAINED PETASCALE COMPUTING

A GREAT LAKES CONSORTIIN - CSFR Ay

Other Useful Hints

I T N T

romio lustre co ratio

romio lustre coll threshold

mpich_mpiio_hints_display

tell MPI-IO the maximum number of

processes (clients, here) that will 1
access an OST
Turns off collective buffering when
transfer sizes are above a certain 0 (never)
threshold
when true a summary of all hints to stderr

false

each time a file is opened

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

IOBUF - 1/O Buffering Library

* Optimize I/O performance with minimal effort
» Asynchronous prefetch
* Write back caching
« stdin, stdout, stderr disabled by default

. Nocode changes needed AL

» Load module
« Recompile & relink the code

- |deal for sequential read or write operations

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

IOBUF - 1/O Buffering Library

» Globally (dis)enable by (un)setting IOBUF _PARAMS

* Fine grained control
 Control buffer size, count, synchronicity, prefetch
 Disable iobuf per file

- Some calls in C, C++ can be enabled using iobuf.h,
use the compiler macro, USE_|IOBUF_MACROS

export IOBUF_PARAMS="*.in:count=4:size=32M,*.out:count=8:size=64M:preflush=1"'

BLUE WATERS [s A s s CrRase

SUSTAINED PETASCALE COMPUTING

IOBUF — MPI-10O Sample Output

I0OBUF parameters: file="outc-iob.4":s1ze=1048576:count=4:vbuffer_count=4096:prefetch=1:verbose
PE ©: File "outc-iob.2"

Calls Seconds Megabytes Megabytes/sec Avg Size
Open 1 0.000756
Close 1 ©.000318
Buffers used 1 (1 MB)
PE @: File "outc-iob.1"

Calls Seconds Megabytes Megabytes/sec Avg Size
Read 1 0.000663 ©.065536 98.841390 65536
Open 1 0.000710
Close 1 0.000361
Buffer Read 1 0.000445 ©0.065536 147 .308632 65536
I/0 Wait 1 0.000474 ©.065536 138.268565
Buffers used 1 (1 MB)
PE ©@: File "outc-iob.3"

Calls Seconds Megabytes Megabytes/sec Avg Size
Read 1 0.000694 ©.065536 94.427313 65536
Open 1 0.000844
Close 1 ©.000189
Buffer Read 1 0.000433 0.065536 151.364486 65536
I/0 Wait 1 0.000460 0.065536 142.497619
Buffers used 1 (1 MB)

IOBUF parameters: file="outc-iob.2":s1ze=1048576:count=4:vbuffer_count=4096:prefetch=1:verbose

BLUE WATERS ok S G ORI CFRAS

SUSTAINED PETASCALE COMPUTING

/O LIBRARIES

HDF5 & PnetCDF

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Benefits of |/O Libraries

» There are many benefits to using higher level /O libraries

« They provide a well-defined, base structure for files that is self-
describing and organizes data intuitively

- Has an API that represents data in a way similar to a simulation
« Often built on MPI-10 and handle (some) optimization

- Easy serialization/deserialization of user data structures
- Portable

* Currently supported: (Parallel) HDF5, (Parallel) netCDF,
Adios

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

/O Libraries — Some Details

« Parallel netCDF

 Derived from and compatible with the original “Network Common
Data Format”

+ Offers collective I/O on single files

- Variables are typed, multidimensional, and (with files) may have
associated attributes

. R_ecqrd variables — “unlimited” dimensions allowed if dimension
size is unknown

 Parallel HDF5

« “Hierarchical Data Format” with data model similar to PnetCDF,
and also uses collective I/O calls

« Can use compression (only in serial 1/O mode)
« Can perform data reordering

* Very flexible

+ Allows some fine tuning, e.g. enabling buffering

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Example Use on Blue Waters
* Under PrgEnv-cray:

$> module avail hdf5
——————————————————————— /opt/cray/modulefiles --——-—-—--—————————————-

hdf5/1.8.7 hdf5/1.8.8 (default) hdf5-parallel/1.8.7 hdf5-parallel/1.8.8
(default)

$> module load hd5-parallel

$> cc Dataset.c

$> gsub -I -lnodes=l:ppn=16 -lwalltime=00:30:00
$> aprun -n 2 ./a.out

Application 1293960 resources: utime ~0s, stime ~O0s

$> 1ls *.h5
SDS.hb

- Dataset.c is a test code from the HDF Group:
http://www.hdfgroup.org/ftp/HDF5/examples/parallel /Dataset.c

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

|/O UTILITIES

Darshan

BLUE WATERS S SR CrRase

SUSTAINED PETASCALE COMPUTING

Example 1/O Utility: Darshan

We will support tools for I/O Characterization
» Sheds light on the intricacies of an application’s 1/O
 Useful for application I/O debugging
 Pinpointing causes of extremes
 Analyzing/tuning hardware for optimizations
- Darshan was developed at Argonne, and

* |s “a scalable HPC |/O characterization tool...
designed to capture an accurate picture of application
/O behavior... with minimum overhead”

* http://www.mcs.anl.gov/research/projects/darshan/

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Darshan Specifics

.]IC_DIa;shan collects per-process statistics (organized by
e
» Counts I/O operations, e.g. unaligned and sequential
accesses
« Times for file operations, e.g. opens and writes
* Accumulates read/write bandwidth info

» Creates data for simple visual representation
* More
» Requires no code modification (only re-linking)

« Small memory footprint
* Includes a job summary tool

BLUE WATERS {55 B s Cmes

SUSTAINED PETASCALE COMPUTING

Summary Tool Example Output

| jobid: 3406 | uid: 1000 | nprocs: 8 | runtime: 1 seconds
Average /O cost per process 1/0 Operation Counts
100 35
W 80 | 30
E 7 .
Eg 825 File Count Summary
= [Q . . .
5 g type | number of files | avg. size | max size
g 20
g 401 ?515 total opened 1 128M 128M
© .
3 " 5 read-only files 0 0 0
g write-only files 0 0 0
0 5 read/write files 1 128M 128M
. ‘ ‘ ‘ created files 0 0 0
Read mmm Read Write Open Stat Seek Mmap Fsync
Write oossooen
Metadata s POSIX o MPI-IO Coll. s
Other (including application compute) mmm—u MPI-1O Indep. sssssmem
Most Common Access Sizes
1/0 Si 1/0 Patt -
. zes . atlemn access size | count
7L , 16777216 | 16
‘06
g, 7
= &5
T4 <,
o —_
8ot g
O2
1 L
0 e L 1
Q 7 7 7 7 7 7 7 7 7
O K, o 00,(r %, %, U %, S 0
© r % ;004_ 2, K~ ’004:7\’@ Read Write

Tota| mmmmm Consecutive
Read mmmmm Write sssssoont Sequential s

BLUE WATERS S SR CrRase

SUSTAINED PETASCALE COMPUTING

Timespan from first to last access on files shared by all processes

read m—
Write —

All processes

00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01
hours:minutes:seconds

Average I/0 per process

Cumulative time spent in Amount of I/O (MB)

I/0 functions (seconds)
Independent reads 0.000000 0.000000
Independent writes 0.000000 0.000000
Independent metadata 0.000000 N/A
Shared reads 0.023298 16.000000
Shared writes 0.049300 16.000000
Shared metadata 0.000019 N/A

Data Transfer Per Filesystem

File System Write Read
Y MiB | Ratio MiB | Ratio
/ ‘ 128.00000 ‘ 1.00000 ‘ 128.00000 ‘ 1.00000

Variance in Shared Files

File Processes Fastest | Slowest | o
Suffix Rank | Time | Bytes | Rank | Time | Bytes | Time | Bytes
...test.out | 8| 0]0.041998 | 32M | 2 0.111384 | 32M | 0.0246 | O

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

THE SUMMARY

Two slides left.

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Good Practices, Generally

« Opening a file for writing/appending is expensive, so:
» If possible, open files as read-only
* Avoid large numbers of small writes
while (forever) { open (“‘myfile”);
write (a byte); close(“myfile”); }

- Be gentle with metadata (or suffer its wrath)
 limit the number of files in a single directory
 Instead opt for hierarchical directory structure

« 1s contacts the metadata server, 1s -1 communicates with every OST
assigned to a file (for all files)

* Avoid wildcards: rm —-rf *, expanding them is expensive over many files

* It may even be more efficient to pass medata through MPI than have all
processes hit the MDS (calling stat)

* Avoid updating last access time for read-only operations (NO_ATIME)

BLUE WATERS Roir L G0N e

SUSTAINED PETASCALE COMPUTING

Lessons Learned

* Avoid unaligned I/O and OST contention!

« Use large data transfers

* Don’t expect performance with non-contiguous, small data
transfers. Use buffering when possible

« Consider using MPI-IO and other /O libraries

- Portable data formats vs. unformatted files
» Use system specific hints and optimizations
* Exploit parallelism using striping

* Focus on stripe alignment, avoiding lock contention
* Move away from one-file-per-process model

« Use aggregation and reduce number of output files
+ Talk to your POC about profiling and optimizing I/O

