
Code profiling with respect to memory using CrayPat

JaeHyuk Kwack & Galen Arnold
SEAS group (help+bw@ncsa.illinois.edu)



The Blue Waters system

2

22,640	XE6	compute	nodes

Number of	Core	Modules 32

Peak	Performance 313	Gflops/sec

Memory	Size 64 GB	per	node

Memory	Bandwidth	(Peak) 102	GB/sec

Interconnect Injection	Bandwidth	(Peak)	 9.6 GB/sec	per	direction

4,228 XK7	compute	nodes	with	 NVIDIA	Kepler (GK110)	GPUs

Host Processor AMD	Series	6200	(Interlagos)

Host Processor	Performance 156.8	Gflops

Kepler Peak (DP	floating	point) 1.32 Tflops

Host	Memory 32GB, 51	GB/sec

Kepler Memory 6GB	GDDR5	capacity,	>	180	GB/sec

Code profiling with respect to memory using CrayPat



Introduction of CrayPat

3

• Performance	measurement	and	analysis
• Automatic	Profiling	Analysis	
• Load	Imbalance	
• HW	counter	derived	metrics	
• Predefined	trace	groups	provide	performance	statistics	for	libraries	called	by	program	(blas,	

lapack,	scalapack,	petsc,	fftw,	cuda,	hdf5,	netcdf,	etc.)	
• Support	MPI,	SHMEM,	OpenMP,	UPC,	CAF,	OpenACC
• Access	to	network	counters	
• Minimal	program	perturbation

• Limitations
• Instrumenting	only	executable	binaries	

• Profiling	a	code	using	python	wrapper	cannot	be	instrumented:	Cray	is	working	on	it
• Tracing	with	many	MPI	processes	yields	huge	data,	while	sampling	with	many	MPI	ranks	is	fine

Code profiling with respect to memory using CrayPat



Introduction of CrayPat

4

• Two	modes	of	use
• CrayPat-lite	for	novice	users,	or	convenience

• % module unload darshan
• % module load perftools-base perftools-lite

• CrayPat for	in-depth	performance	investigation	and	tuning	assistance
• % module unload darshan
• % module load perftools-base perftools

• Compatible	programming	environments
• GNU,	Intel,	PGI	and	Cray	compilers	for	most	of	functions
• Only	for	Cray	compiler:	reveal,	loop	work	estimates	(with	“-h	profile_generate”),	and	so	on

Code profiling with respect to memory using CrayPat



How to use CrayPat

5

• Procedures	for	instrumentation
• Building	program	after	updating	modules	for	CrayPat

• No	special	flags	required	in	general	(e.g.,	-g	is	not	required)
• With	any	optimization	flag	(e.g.,	-O0,	-O1,	-O2,	-O3)

• Instrumenting	the	original	program
• For	the	default	Automatic	Profiling	Analysis, % pat_build my_program
• For	predefined	trace	groups,	 % pat_build –g tracegroup my_program
• For	enabling	tracing	and	the	CrayPat API,	 % pat_build –w my_program
• For	instrumenting	a	single	function,	 % pat_build –T tracefunc my_program
• For	instrumenting	a	list	of	functions, % pat_build –t tracefile my_program
• This	produces	the	instrumented	executable	my_program+pat

Code profiling with respect to memory using CrayPat



How to use CrayPat

6

• Running	the	instrumented	executable
• Running	it	after	updating	modules	for	CrayPat

• % aprun my_program+pat
• This	produces	a	data	file	my_program+pat+PID+node[s|t].xf

• s for	sampling	|	t for	tracing
• For	many	MPI	ranks,	the	folder	my_program+pat+PID+node[s|t]	is	produced

• CrayPat Run	Time	Environment
• “export	PAT_RT_SUMMARY=0”	to	disable	run	time	summarization	before	be	saved
• Use	“PAT_RT_PERFCTR”	for	monitoring	performance	counters	(will	discuss	it	later)

• Processing	raw	performance	data	and	creating	report
• % pat_report my_program+pat+PID+node[s|t].xf
• This	generates	an	.ap2	file

• A	self-contained	archive	that	can	be	reopened	later	using	the	pat_report command
• The	exported-data	file	format	used	by	Cray	Apprentice2

Code profiling with respect to memory using CrayPat



CrayPat API

7

• Focusing	on	a	certain	region	within	the	code,	either	to	reduce	sampling	overhead,	reduce	data	file	
size,	or	because	only	a	particular	region	is	of	interest

• Inserting	calls	into	the	program	source
• Turning	data	capture	on	and	off	at	key	points	during	program	execution

• Header	files
• pat_api.h for	C	
• pat_apif.h or	pat_apif77.h	for	Fortran

• Compiler	macro,	CRAY_PAT	from	the	perftools-base	module
#if	defined	(CRAY_PAT)

<CrayPat API	calls>
#endif

Code profiling with respect to memory using CrayPat



CrayPat API

8

• API	calls	in	C	syntax
• PAT_record(int state)

• Setting	the	recording	state to	PAT_STATE_ON	or	PAT_STATE_OFF
• PAT_region_begin(int id,	const char	*label)	
• PAT_region_end(int id)

• Defines	the	boundaries	of	a	region
• Regions	must	be	either	separate	or	nested	

[an example]
PAT_record(PAT_STATE_ON);
PAT_region_begin(1, “task_region-1”);

<tasks;>
PAT_region_end(1);
PAT_region_begin(2, “task_region-2”);

<tasks;>
PAT_region_end(2);
PAT_record(PAT_STATE_OFF);

Code profiling with respect to memory using CrayPat



Profiling w.r.t. memory 

9

• L1	cache
• 16	KB	for	data	per	integer	core
• Latency		3-4	clocks

• L2	cache	
• 2	MB	per	two	integer	cores
• Latency	21	clocks

• L3	cache
• 16	MB	per	socket
• Latency	87	clocks

• DDR	memory
• 64	GB	for	general	XE	nodes
• 128	GB	for	himem XE	nodes
• 32	GB	for	general	XK	nodes
• 64	GB	for	himem XK	nodes

Memory	hierarchy	of	Bulldozer	processors	with	32	GB	DDR	memory

Code profiling with respect to memory using CrayPat



PAT_RT_PERFCTR

10

• Specifying	the	performance	counters	to	be	monitored	during	the	execution	of		a	program
• More	details	about	hardware	counters	for	AMD	Interlargos

• Four	48-bit	performance	counters		in	AMD	Interlargos
• %	pat_help counters	amd_fam15h

• PAPI	performance	counters	(i.e.,papi)
• PAPI_L1_DCA:	Level	1	data	cache	accesses.
• PAPI_L1_DCM:	Level	1	data	cache	misses.
• PAPI_L1_DCH:	Level	1	data	cache	hits.	(derived)
• PAPI_FP_OPS:	Floating	point	operations.
• PAPI_DP_OPS:	Floating	point	operations;	optimized	to	count	scaled	double	precision	vector	operations.

Code profiling with respect to memory using CrayPat



PAT_RT_PERFCTR

11

• AMD	native	performance	counters	(i.e.,	native)
• cray_nb:::L3_CACHE_MISSES

Number	of	L3	cache	misses	for	accesses	from	each	core.
ANY_CORE	:	Measure	on	any	core
CORE_0	:	Measure	on	Core1 CORE_1	:	Measure	on	Core1 CORE_2	:	Measure	on	Core2
CORE_3	:	Measure	on	Core3 CORE_4	:	Measure	on	Core4 CORE_5	:	Measure	on	Core5
CORE_6	:	Measure	on	Core6 CORE_7	:	Measure	on	Core7 PREFETCH	:	Count	prefetches honly
READ_BLOCK_ANY	:	Count	any	read	request READ_BLOCK_MODIFY	:	Read	Block	Modify
READ_BLOCK_EXCLUSIVE	:	Read	Block	Exclusive	(Data	cache	read)
READ_BLOCK_SHARED	:	Read	Block	Shared	(Instruction	cache	read)

• Derived	metrics	(i.e.,	deriv)
• D1_D2_cache_hit_ratio:	D1+D2	cache	hit	ratio,

Computed	as	min	(	1,	(PAPI_L1_DCA	- D1_D2_miss)	/	PAPI_L1_DCA	)
• Computational_intensity:	FP	Ops	/	L1_DCA.

Computed	as	fl_pe_sum /	PAPI_L1_DCA_pe_sum

Code profiling with respect to memory using CrayPat



PAT_RT_PERFCTR

12

• Predefined	counter	groups	(i.e.,	groups)
• 0:	Summary	with	instructions	metrics

PAPI_TOT_INS,	PAPI_FP_OPS,	PAPI_L1_DCA,	PAPI_L1_DCM

• 2:	L1	and	L2	Metrics
PAPI_L1_DCA,	PAPI_L1_DCM,	DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRIDGE:ALL,	
DATA_CACHE_REFILLS_FROM_NORTHBRIDGE

• 3:	Bandwidth	information
DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRIDGE:ALL,	DATA_CACHE_REFILLS_FROM_NORTHBRIDGE,,	
OCTWORD_WRITE_TRANSFERS:ALL

• 23:	FP,	D1,	D2,	and	TLB
PAPI_FP_OPS,	PAPI_L1_DCA, PAPI_L1_DCM, PAPI_TLB_DM, DATA_CACHE_REFILLS_FROM_NORTHBRIDGE
,	DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRIDGE:ALL

Code profiling with respect to memory using CrayPat



Example 1 (profiling cache utilization with CrayPat API)

13

• Description
• Compute	square	of	2D	array	at	each	MPI	rank:	

OA(i,j)	=	A(i,j)*A(i,j)	with	0	<	i,j <=	1024	
• Implementation	of	a	CrayPat region	in	Fortran

• Adding	header
• Adding	a	CrayPat region

• Instrumenting	the	executable
• % pat_build -w squ_arrays_MPI+O3

• Running the instrumented executable

Code profiling with respect to memory using CrayPat



Example 1

14Code profiling with respect to memory using CrayPat

• CrayPat report



Example 1 

15

• Updating	the	loop	for	stride-1	
reference	pattern

Code profiling with respect to memory using CrayPat



16

• High	Performance	Geometric	Multi-Grid	benchmark
• HPC	performance	benchmarking	based	on	full	multi-grid(FMG)	F-cycle
• Reporting	number	of	equations	solvable	per	second	for	three	resolutions	(i.e.,	1h,	2h,	and	4h)

• Objective	of	profiling
• Measuring	flop-rates	for	three	resolutions	

Code profiling with respect to memory using CrayPat

Example 2 (measuring flop-rates with CrayPat API)

Source:	Williams	(hpgmg.org),	HPGMG	BoF,	SC-16,	2016

HPGMG-FV uses Full Multigrid (FMG) 

High Performance Geometric Multigrid (HPGMG) BoF 
Supercomputing, 2016 7 

!  FMG is a single pass, direct solver that provides a solution to 
the discretization error (4th order) 

!  The FMG multigrid F-Cycle is a series of progressively deeper 
geometric multigrid V-cycles 2563 

23 

43 

83 

163 

323 

643 

1283 

Coarse	grid	operations

Agglomeration	stages

Distributed	fine	grid	operations



17

• Implementation	of	CrayPat regions	in	C
• Add	header

• Add	CrayPat regions

Code profiling with respect to memory using CrayPat

Example 2 (measuring flop-rates with CrayPat API)



18

• Instrumenting	the	executable	and	running	it
• %	pat_build -w	hpgmg
• %	export	PAT_RT_PERFCTR=23
• %	aprun –n	1024	hpgmg+pat 8	1

Code profiling with respect to memory using CrayPat

Example 2 (measuring flop-rates with CrayPat API)



19Code profiling with respect to memory using CrayPat

• Region	for	1h
Example 2



20Code profiling with respect to memory using CrayPat

• Region	for	2h
Example 2



21Code profiling with respect to memory using CrayPat

• Region	for	4h
Example 2



22Code profiling with respect to memory using CrayPat

Example 2, after profiling several cases
DOFS/node	vs.	Cache	hit	ratio Computational	intensity	@	L1	cache	vs.	HPGMG



Summary

23

• Procedure	for	CrayPat instrumentation
• pat_build
• pat_report

• CrayPat API
• Headers
• pat_regions

• Run-time	environments	(PAT_RT_PERFCTR)
• papi
• native
• derive
• groups

Code profiling with respect to memory using CrayPat



QUESTIONS ?

24Code profiling with respect to memory using CrayPat



Acknowledgment
This study is part of the Blue Waters sustained-petascale computing project, which is 
supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) 
and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-
Champaign and its National Center for Supercomputing Applications.

25Code profiling with respect to memory using CrayPat


