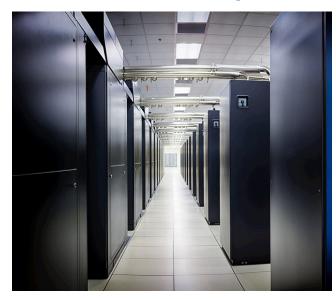
BLUE WATERS SUSTAINED PETASCALE COMPUTING

Code profiling with respect to memory using CrayPat

JaeHyuk Kwack & Galen Arnold SEAS group (help+bw@ncsa.illinois.edu)



NÊSA

LAKES CONSORTIUM

The Blue Waters system

22,640 XE6 compute nodes				
Number of Core Modules	32			
Peak Performance	313 Gflops/sec			
Memory Size	64 GB per node			
Memory Bandwidth (Peak)	102 GB/sec			
Interconnect Injection Bandwidth (Peak)	9.6 GB/sec per direction			

4,228 XK7 compute nodes with NVIDIA Kepler (GK110) GPUs

Host Processor	AMD Series 6200 (Interlagos)
Host Processor Performance	156.8 Gflops
Kepler Peak (DP floating point)	1.32 Tflops
Host Memory	32GB, 51 GB/sec
Kepler Memory	6GB GDDR5 capacity, > 180 GB/sec

Introduction of CrayPat

- Performance measurement and analysis
 - Automatic Profiling Analysis
 - Load Imbalance
 - HW counter derived metrics
 - Predefined trace groups provide performance statistics for libraries called by program (blas, lapack, scalapack, petsc, fftw, cuda, hdf5, netcdf, etc.)
 - Support MPI, SHMEM, OpenMP, UPC, CAF, OpenACC
 - Access to network counters
 - Minimal program perturbation
- Limitations
 - Instrumenting only executable binaries
 - Profiling a code using python wrapper cannot be instrumented: Cray is working on it
 - Tracing with many MPI processes yields huge data, while sampling with many MPI ranks is fine

Introduction of CrayPat

- Two modes of use
 - CrayPat-lite for novice users, or convenience
 - % module unload darshan
 - % module load perftools-base perftools-lite
 - CrayPat for in-depth performance investigation and tuning assistance
 - % module unload darshan
 - % module load perftools-base perftools

jkwack2@h2ologin2:~> module avail perftools /opt/cray/modulefiles -----perftools/6.2.1 perftools/6.4.3(default) perftools-base/6.4.6 perftools-lite/6.3.2 perftools-lite/6.4.3(default) perftools/6.2.2 perftools/6.4.6 perftools-lite/6.2.1 perftools/6.2.3 perftools-base/6.3.0 perftools-lite/6.2.2 perftools-lite/6.4.6 perftools/6.3.0 perftools-base/6.3.1 perftools-lite/6.2.3 perftools/6.3.1 perftools-base/6.3.2 perftools-lite/6.3.0 perftools/6.3.2 perftools-base/6.4.3(default) perftools-lite/6.3.1 jkwack2@h2ologin2:~>

- Compatible programming environments
 - GNU, Intel, PGI and Cray compilers for most of functions
 - Only for Cray compiler: reveal, loop work estimates (with "-h profile_generate"), and so on

How to use CrayPat

- Procedures for instrumentation
 - Building program after updating modules for CrayPat
 - No special flags required in general (e.g., -g is not required)
 - With any optimization flag (e.g., -O0, -O1, -O2, -O3)
 - Instrumenting the original program
 - For the default Automatic Profiling Analysis, % pat_build my_program
 - For predefined trace groups, % pat_build -g *tracegroup my_program*
 - For enabling tracing and the CrayPat API,
 - For instrumenting a single function,
 - For instrumenting a list of functions,
 - This produces the instrumented executable *my program+pat*

% pat_build -w my_program

% pat build -T tracefunc my program

% pat build -t tracefile my program

How to use CrayPat

- Running the instrumented executable
 - Running it after updating modules for CrayPat
 - % aprun *my_program+pat*
 - This produces a data file my_program+pat+PID+node[s|t].xf
 - *s* for sampling | *t* for tracing
 - For many MPI ranks, the folder *my_program+pat*+PID+node[*s*|*t*] is produced
 - CrayPat Run Time Environment
 - "export PAT_RT_SUMMARY=0" to disable run time summarization before be saved
 - Use "PAT_RT_PERFCTR" for monitoring performance counters (will discuss it later)
- Processing raw performance data and creating report
 - % pat_report my_program+pat+PID+node[s|t].xf
 - This generates an .ap2 file
 - A self-contained archive that can be reopened later using the pat_report command
 - The exported-data file format used by Cray Apprentice2

- Focusing on a certain region within the code, either to reduce sampling overhead, reduce data file size, or because only a particular region is of interest
- Inserting calls into the program source
- Turning data capture on and off at key points during program execution
- Header files
 - pat_api.h for C
 - pat_apif.h or pat_apif77.h for Fortran
- Compiler macro, CRAY_PAT from the perftools-base module #if defined (CRAY_PAT) <CrayPat API calls> #endif

BLUE WATERS

CrayPat API

- API calls in C syntax
 - PAT_record(int state)
 - Setting the recording *state* to PAT_STATE_ON or PAT_STATE_OFF
 - PAT_region_begin(int *id*, const char **label*)
 - PAT_region_end(int *id*)
 - Defines the boundaries of a region
 - Regions must be either separate or nested

Profiling w.r.t. memory

- L1 cache
 - 16 KB for data per integer core
 - Latency 3-4 clocks
- L2 cache
 - 2 MB per two integer cores
 - Latency 21 clocks
- L3 cache
 - 16 MB per socket
 - Latency 87 clocks
- DDR memory
 - 64 GB for general XE nodes
 - 128 GB for himem XE nodes
 - 32 GB for general XK nodes
 - 64 GB for himem XK nodes

Memory hierarchy of Bulldozer processors with 32 GB DDR memory

achine (32GB)				_				
Socket P#0 (16GB)					Socket P#1 (16GB)			
NUMANode P#0 (8192MB)					NUMANode P#2 (8192MB)			
L3 (8192KB)					L3 (8192KB)			
L2 (2048KB)	18KB)	L2 (2048KB)	L2 (2048KB)		L2 (2048KB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)
L1i (64KB)	KB)	L1i (64KB)	L1i (64KB)		L1i (64KB)	L1i (64KB)	L1i (64KB)	L1i (64KB)
L1d (16KB) L1d (16KB) L1d (1	6KB) L1d (16KB)	L1d (16KB) L1d (16KB)	L1d (16KB) L1d (16KB)		L1d (16KB) L1d (16KB)	L1d (16KB) L1d (16KB)	L1d (16KB) L1d (16KB)	L1d (16KB) L1d (16KB)
Core P#0 Core P#1 Core P PU P#0 PU P#1 PU P		Core P#4 Core P#5 PU P#4 PU P#5	Core P#6 Core P#7 PU P#6 PU P#7		Core P#0 Core P#1 PU P#16 PU P#17	Core P#2 Core P#3 PU P#18 PU P#19	Core P#4 Core P#5 PU P#20 PU P#21	Core P#6 Core P#7 PU P#22 PU P#23
NUMANode P#1 (8192MB)					NUMANode P#3 (8192MB)			
L3 (8192KB)				Ш	L3 (8192KB)			
L2 (2048KB)	I8KB)	L2 (2048KB)	L2 (2048KB)		L2 (2048KB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)
L1i (64KB)	KB)	L1I (64KB)	L1i (64KB)		L1i (64KB)	L1i (64KB)	L1i (64KB)	L1i (64KB)
L1d (16KB) L1d (16KB) L1d (1	5KB) L1d (16KB)	L1d (16KB) L1d (16KB)	L1d (16KB) L1d (16KB)		L1d (16KB) L1d (16KB)	L1d (16KB) L1d (16KB)	L1d (16KB) L1d (16KB)	L1d (16KB) L1d (16KB)
Core P#0 Core P#1 Core F PU P#8 PU P#9 PU F		Core P#4 Core P#5 PU P#12 PU P#13	Core P#6 Core P#7 PU P#14 PU P#15		Core P#0 Core P#1 PU P#24 PU P#25	Core P#2 Core P#3 PU P#26 PU P#27	Core P#4 Core P#5 PU P#28 PU P#29	Core P#6 Core P#7 PU P#30 PU P#31

- Specifying the performance counters to be monitored during the execution of a program
- More details about hardware counters for AMD Interlargos
 - Four 48-bit performance counters in AMD Interlargos
 - % pat_help counters amd_fam15h

```
jkwack2@h2ologin3:~> pat_help counters amd_fam15h
Additional topics that may follow "counters amd_fam15h":
    deriv
    groups
    native
    papi
pat_help counters amd_fam15h (.=quit ,=back ^=up /=top ~=search)
=>
```

- PAPI performance counters (i.e., papi)
 - PAPI_L1_DCA: Level 1 data cache accesses.
 - PAPI_L1_DCM: Level 1 data cache misses.
 - PAPI_L1_DCH: Level 1 data cache hits. (derived)
 - PAPI_FP_OPS: Floating point operations.
 - PAPI_DP_OPS: Floating point operations; optimized to count scaled double precision vector operations.

PAT_RT_PERFCTR

- AMD native performance counters (i.e., native)
 - cray nb:::L3 CACHE MISSES
 - Number of L3 cache misses for accesses from each core.
 - ANY CORE : Measure on any core
 - CORE 0 : Measure on Core1

 - CORE 6 : Measure on Core6 CORE 7 : Measure on Core7
 - CORE 1 : Measure on Core1 CORE 3 : Measure on Core3 CORE 4 : Measure on Core4
- CORE 2 : Measure on Core2
- CORE 5 : Measure on Core5
- **PREFETCH** : Count prefetches honly

11

- READ BLOCK ANY : Count any read request READ BLOCK MODIFY : Read Block Modify
- READ BLOCK EXCLUSIVE : Read Block Exclusive (Data cache read) READ BLOCK SHARED : Read Block Shared (Instruction cache read)
- Derived metrics (i.e., deriv)
 - D1 D2 cache hit ratio: D1+D2 cache hit ratio,
 - Computed as min (1, (PAPI_L1_DCA D1_D2 miss) / PAPI L1 DCA)
 - Computational intensity: FP Ops / L1 DCA.
 - Computed as fl pe sum / PAPI L1 DCA pe sum

PAT_RT_PERFCTR

- Predefined counter groups (i.e., groups)
 - 0: Summary with instructions metrics PAPI_TOT_INS, PAPI_FP_OPS, PAPI_L1_DCA, PAPI_L1_DCM
 - 2: L1 and L2 Metrics
 PAPI_L1_DCA, PAPI_L1_DCM, DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRIDGE:ALL,
 DATA_CACHE_REFILLS_FROM_NORTHBRIDGE
 - 3: Bandwidth information DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRIDGE:ALL, DATA_CACHE_REFILLS_FROM_NORTHBRIDGE,, OCTWORD_WRITE_TRANSFERS:ALL
 - 23: FP, D1, D2, and TLB PAPI_FP_OPS, PAPI_L1_DCA, PAPI_L1_DCM, PAPI_TLB_DM, DATA_CACHE_REFILLS_FROM_NORTHBRIDGE , DATA_CACHE_REFILLS_FROM_L2_OR_NORTHBRIDGE:ALL

- Description
 - Compute square of 2D array at each MPI rank:
 OA(i,j) = A(i,j)*A(i,j) with 0 < i,j <= 1024
- Implementation of a CrayPat region in Fortran
 - Adding header
 - Adding a CrayPat region
- Instrumenting the executable
 - % pat_build -w squ_arrays_MPI+O3
- Running the instrumented executable

```
jkwack2@nid00014:~/SEAS/Profiling_Toy_Codes> export PAT_RT_PERFCTR=2
jkwack2@nid00014:~/SEAS/Profiling_Toy_Codes> aprun -n 32 ./squ_arrays_MPI_03+pat
CrayPat/X: Version 6.4.6 Revision 7d0d87c 02/20/17 09:52:37
    Number of MPI process = 32
    Number of rows/columns of the matrix = 1024
Experiment data file written:
/mnt/abc/u/staff/jkwack2/SEAS/Profiling_Toy_Codes/squ_arrays_MPI_03+pat+9944-32t.xf
```

Application 410615 resources: utime ~13s, stime ~7s, Rss ~41496, inblocks ~19734, outblocks ~2949 jkwack2@nid00014:~/SEAS/Profiling_Toy_Codes> pat_report squ_arrays_MPI_03+pat+9944-32t.xf

```
program main
use mpi
implicit none
#ifdef CRAYPAT
include "pat_apif.h"
#endif
```

```
#endif
```

```
! Computing square(A)
#ifdef CRAYPAT
    call PAT_region_begin(1, 'A(i,j)^2',ierr)
#endif
do i=1,n
    do j=1,n
        OA(i,j) = A(i,j)*A(i,j)
    enddo
enddo
#ifdef CRAYPAT
    call PAT_region_end(1,ierr)
#endif
! Turning off PAT_record
```

```
#ifdef CRAYPAT
    call PAT_record(PAT_STATE_0FF,ierr)
#endif
```


Time%		67.6%	
Time		0.128852	
Imb. Time		0.019737	
Imb. Time%		13.7%	
Calls	7.761 /sec	1.0	calls
PAPI_L1_DCM	51.235M/sec	6,601,695	misses
PAPI_L1_DCA	21.412M/sec	2,758,946	refs
DATA_CACHE_REFILLS_FROM_L2_OR_NORT	HBRIDGE:		
ALL	61.468M/sec	7,920,209	fills
DATA_CACHE_REFILLS_FROM_NORTHBRIDG	E 16.263M/sec	2.095.494	fills
D1 cache hit,miss ratios	0.0% hits	100.0%	misses
D1 cache hit, refill ratio	0.0% hits	100.0%	refills
D1 cache utilization (misses)	0.42 refs/miss	s 0.05	avg hits
D1 cache utilization (refills)	0.35 refs/refi	.11 0.04	avg uses
D2 cache hit.miss ratio	73.5% hits	26.5%	misses
D1+D2 cache hit,miss ratio	36.7% hits	63.3%	misses
D1+D2 cache utilization	1.58 refs/miss		avg hits
System to D1 refill	16.263M/sec	· · ·	
System to D1 bandwidth	992.604MiB/sec 1	· · ·	
D2 to D1 bandwidth	2,759.079MiB/sec 3	372,781,742	bytes
Average Time per Call		0.128852	secs
CrayPat Overhead : Time	0.0%		

I

Code profiling with respect to memory using CrayPat

GREAT

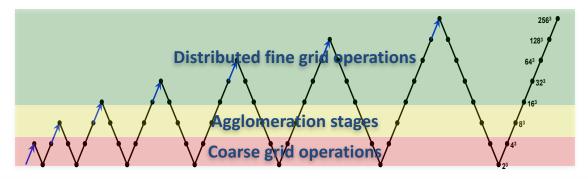
LAKES CONSORTIUM

BLUE WATERS SUSTAINED PETASCALE COMPUTING

Example 1

• Updating the loop for stride-1 reference pattern

<pre>! Turning on Pat_record #ifdef CRAYPAT call PAT_record(PAT_STATE_ON,ierr) #endif</pre>
! Computing square(A) updated #ifdef CRAYPAT call PAT_region_begin(11,'A(i,j)^2 updated ',ierr) #endif
<pre>do j=1,n do i=1,n OA(i,j) = A(i,j)*A(i,j) enddo enddo</pre>
#ifdef CRAYPAT call PAT_region_end(11,ierr) #endif
<pre>! Turning off PAT_record #ifdef CRAYPAT call PAT_record(PAT_STATE_0FF,ierr) #endif</pre>


USER / #11.A(i,j)^2 updated			
 Time%		2.7%	
Time		0.005086	secs
Imb. Time		0.002045	secs
Imb. Time%		29.6%	
Calls	196.616 /sec	1.0	calls
PAPI_L1_DCM	29.951M/sec	152,335	misses
PAPI_L1_DCA	261.062M/sec	1,327,775	refs
DATA_CACHE_REFILLS_FROM_L2_OR_NORT	HBRIDGE:		
ALL	105.171M/sec	534,906	fills
DATA CACHE REFILLS FROM NORTHBRIDG	E 47.189M/sec	240.007	fills
D1 cache hit,miss ratios	88.5% hits	11.5%	misses
D1 cache hit,refill ratio	59.7% hits	40.3%	refills
D1 cache utilization (misses)	8.72 refs/mis	s 1.09	avg hits
D1 cache utilization (refills)	2.48 refs/ref		
D2 cache hit.miss ratio	55.1% hits	44.9%	misses
D1+D2 cache hit,miss ratio	94.9% hits	5.1%	misses
D1+D2 cache utilization	19.43 refs/mis		avg hits
System to D1 refill	47.189M/sec	· · · · · · · · · · · · · · · · · · ·	
	2,880.204MiB/sec	· · · ·	
	3.538.928MiB/sec	18.873.530	bvtes
Average Time per Call		0.005086	secs
CrayPat Overhead : Time	0.1%		

Example 2 (measuring flop-rates with CrayPat API)

- High Performance Geometric Multi-Grid benchmark
 - HPC performance benchmarking based on full multi-grid(FMG) F-cycle
 - Reporting number of equations solvable per second for three resolutions (i.e., 1h, 2h, and 4h)
- Objective of profiling
 - Measuring flop-rates for three resolutions

Source: Williams (hpgmg.org), HPGMG BoF, SC-16, 2016

Example 2 (measuring flop-rates with CrayPat API)

Implementation of CrayPat regions in C

```
// Adding CrayPat by JaeHyuk Kwack
Add header
                                                 #ifdef CRAYPAT
#ifdef CRAYPAT
                                                 PAT record(PAT STATE ON);
#include "pat_api.h"
                                                  #endif
                                                 #define DYNAMIC RANGE 3
#endif
                                                 double AverageSolveTime[DYNAMIC_RANGE];
Add CrayPat regions
                                                  for(l=0;l<DYNAMIC_RANGE;l++){</pre>
                                                    // if(problem size too small)break;
                                                    #ifdef CRAYPAT
                                                   if(l==0) PAT_region_begin(1,"hpgmg_bench_1h");
if(l==1) PAT_region_begin(2,"hpgmg_bench_2h");
if(l==2) PAT_region_begin(3,"hpgmg_bench_4h");
                                                    #endif
                                                    if(l>0)restriction(MG_h.levels[l],VECTOR_F,MG_h.levels[l-1],VECTOR_F,RESTRICT_CELL);
                                                    bench_hpgmg(&MG_h,l,a,b,rtol);
                                                    #ifdef CRAYPAT
                                                    if(l==0) PAT_region_end(1);
                                                    if(l==1) PAT_region_end(2);
                                                    if(l==2) PAT_region_end(3);
                                                    #endif
                                                   AverageSolveTime[l] = (double)MG_h.timers.MGSolve / (double)MG_h.MGSolves_performed;
                                                    if(my_rank==0){fprintf(stdout,"\n\n===== Timing Breakdown =
                                                   MGPrintTiming(&MG_h,l);
                                                 // Adding CrayPat by JaeHyuk Kwack
                                                 #ifdef CRAYPAT
                                                 PAT_record(PAT_STATE_OFF);
                                                 #endif
```


- Instrumenting the executable and running it
 - % pat_build -w hpgmg
 - % export PAT_RT_PERFCTR=23
 - % aprun –n 1024 hpgmg+pat 8 1

Table 1: Profile by Function Group and Function	Table 4: Memory High Water Mark by Numa Node
Time% Time Imb. Calls Group Time% Function PE=HIDE	Process HiMem HiMem HiMem HiMem Numanode HiMem Numa Numa Numa PE=HIDE (MBytes) Node 0 Node 1 Node 2 Node 3 (MBytes) (MBytes) (MBytes)
100.0% 667.109019 6.0 Total 	452.7 120.7 111.6 110.6 109.9 Total
11	115.1 108.6 2.7 2.1 1.6 numanode.0 112.8 4.4 104.5 2.2 1.7 numanode.1
54.8% 365.506644 0.000491 0.0% 1.0 #1.hpgmg_bench_1h 22.4% 149.585381 58.450097 28.1% 1.0 main 12.3% 82.151491 1.380443 1.7% 1.0 #2.hpgmg_bench_2h	1 112.8 1.4 104.3 2.2 1.7 104.00000000000000000000000000000000000
11 12.3% 62.131491 1.386443 1.7% 1.0 #2.hpgmg_bench_2h 11 9.5% 63.538036 0.022500 0.0% 1.0 #3.hpgmg_bench_4h ====================================	

BLUE WATERS SUSTAINED PETASCALE COMPUTING

Example 2

• Region for 1h

USER / #1.hpgmg_bench_1h			
Time%		54.8%	
Time		365.506644	secs
Imb. Time		0.000491	secs
Imb. Time%		0.0%	
Calls	0.003 /sec	1.0	calls
PAPI_L1_DCM	57.832M/sec	21,138,096,091	misses
PAPI_TLB_DM	0.440M/sec	160,846,785	misses
PAPI_L1_DCA	1,267.602M/sec	463,316,889,033	refs
PAPI_FP_OPS	1,117.479M/sec	408,445,909,119	
DATA_CACHE_REFILLS_FROM_L2_OR_	NORTHBRIDGE:		
ALL	86.593M/sec	31,650,208,551	fills
DATA_CACHE_REFILLS_FROM_NORTHB	RIDGE 6.377M/sec	2,330,850,470	fills
HW FP Ops / User time	1.117.479M/sec	408,445,909,119	
Computational intensity	ops/cycle	0.88	ops/ref
MFLOPS (aggregate)	1,144,298.24M/sec		
TLB utilization	Z,880.49 rets/miss	5.63	avg uses
D1 cache hit,miss ratios	95.4% hits	4.6%	misses
D1 cache hit,refill ratio	93.2% hits	6.8%	refills
D1 cache utilization (misses)	21.92 refs/miss	2.74	avg hits
D1 cache utilization (refills)	14.64 refs/refi	11 1.83	avg uses
D2 cache hit.miss ratio	92.6% hits	7.4%	misses
D1+D2 cache hit,miss ratio	99.7% hits	0.3%	misses
D1+D2 cache utilization	297.63 refs/miss	37.20	avg hits
System to D1 refill	6.377M/sec	2,330,850,470	
System to D1 bandwidth	389.224MiB/sec		
D2 to D1 bandwidth	4,895.976MiB/sec 1	,876,438,917,136	bytes
Average Time per Call		365.506644	secs
CrayPat Overhead : Time	0.0%		

BLUE WATERS SUSTAINED PETASCALE COMPUTING

Example 2

• Region for 2h

USER / #2.hpgmg_bench_2h			
 Time%		12.3%	
Time		82.151491	
		1.380443	
Imb. Time			
Imb. Time%	0.012 (1.7%	
Calls	0.012 /sec		calls
PAPI_L1_DCM	57.165M/sec	4,696,163,776	
PAPI_TLB_DM	0.413M/sec	33,919,317	
PAPI_L1_DCA		104,416,984,071	
PAPI_FP_OPS	1,057.664M/sec	86,888,685,162	ops
DATA_CACHE_REFILLS_FROM_L2_OR_			
ALL	83.716M/sec	6,877,430,703	
DATA_CACHE_REFILLS_FROM_NORTHE		523,930,239	
HW FP Ops / User time	1.057.664M/sec	86.888.685.162	00S
Computational intensity	ops/cycle	0.83	ops/ref
MFLOPS (aggregate)	1,083,048.07M/sec		
TLB utilization	3,078.39 refs/miss	6.01	avg uses
D1 cache hit,miss ratios	95.5% hits	4.5%	misses
D1 cache hit,refill ratio	93.4% hits	6.6%	refills
D1 cache utilization (misses)	22.23 refs/miss	2.78	avg hits
D1 cache utilization (refills)) 15.18 refs/refil	1 1 00	avg uses
		L 1.90	uvy uses
D2 cache hit miss ratio	92.4% hits		misses
		7.6%	
D2 cache hit miss ratio	92.4% hits	7.6% 0.3%	misses
D2 cache hit miss ratio D1+D2 cache hit miss ratio	92.4% hits 99.7% hits	7.6% 0.3% 36.48 523,930,239	misses misses avg hits lines
D2 cache hit miss ratio D1+D2 cache hit miss ratio D1+D2 cache utilization	92.4% hits 99.7% hits 291.86 refs/miss	7.6% 0.3% 36.48	misses misses avg hits lines
D2 cache hit miss ratio D1+D2 cache hit miss ratio D1+D2 cache utilization System to D1 refill	92.4% hits 99.7% hits 291.86 refs/miss 6.378M/sec 389.258MiB/sec	7.6% 0.3% 36.48 523,930,239	misses misses avg hits lines bytes
D2 cache hit miss ratio D1+D2 cache hit miss ratio D1+D2 cache utilization System to D1 refill System to D1 bandwidth	92.4% hits 99.7% hits 291.86 refs/miss 6.378M/sec 389.258MiB/sec	7 6% 0.3% 36.48 523,930,239 33,531,535,265	misses misses avg hits lines bytes bytes
D2 cache hit miss ratio D1+D2 cache hit miss ratio D1+D2 cache utilization System to D1 refill System to D1 bandwidth D2 to D1 bandwidth	92.4% hits 99.7% hits 291.86 refs/miss 6.378M/sec 389.258MiB/sec	7 6% 0.3% 36.48 523,930,239 33,531,535,265 406,624,029,735	misses misses avg hits lines bytes bytes

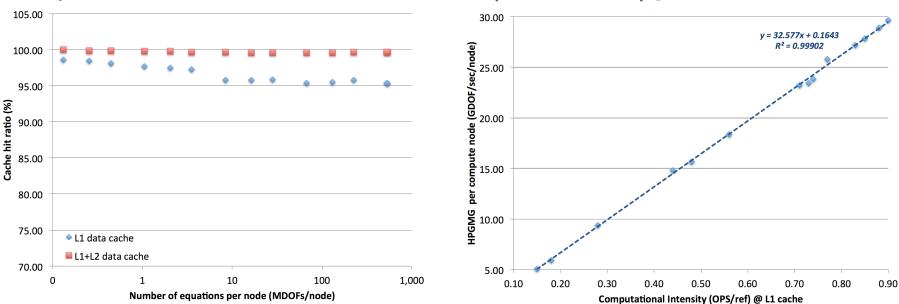
Code profiling with respect to memory using CrayPat

٦

BLUE WATERS

Example 2

• Region for 4h



USER / #3.hpgmg_bench_4h			
Time%		9.5%	
Time		63.538036	secs
Imb. Time		0.022500	secs
Imb. Time%		0.0%	
Calls	0.016 /sec	1.0	calls
PAPI_L1_DCM	50.250M/sec	3,192,808,207	misses
PAPI_TLB_DM	0.319M/sec	20,268,724	misses
PAPI_L1_DCA	1,247.096M/sec	79,238,041,625	refs
PAPI_FP_OPS	866.400M/sec	55,049,349,244	
DATA_CACHE_REFILLS_FROM_L2_OR_N	ORTHBRIDGE:		
ALL	69.995M/sec	4,447,328,484	fills
DATA_CACHE_REFILLS_FROM_NORTHBR	IDGE 5.680M/sec	360,901,226	
HW FP Ops / User time	866.400M/sec	55.049.349.244	ods
Computational intensity	ops/cycle	0.69	ops/ref
MFLOPS (aggregate)	887,193.52M/sec		
ILB utilization	3,909.37 rets/miss	7.64	avg uses
D1 cache hit,miss ratios	96.0% hits	4.0%	misses
D1 cache hit, refill ratio	94.4% hits	5.6%	refills
D1 cache utilization (misses)	24.82 refs/miss	3.10	avg hits
D1 cache utilization (refills)	17.82 refs/refil	.1 2.23	avg uses
D2 cache hit miss ratio	91.9% hits	8.1%	misses
D1+D2 cache hit,miss ratio	99.7% hits	0.3%	misses
D1+D2 cache utilization	305.82 refs/miss	38.23	avg hits
System to D1 refill	5.680M/sec	360,901,226	lines
System to D1 bandwidth	346.685MiB/sec	23,097,678,453	
D2 to D1 bandwidth	3,925.455MiB/sec	261,531,344,492	
Average Time per Call		63.538036	
CrayPat Overhead : Time	0.0%		

DOFS/node vs. Cache hit ratio

Computational intensity @ L1 cache vs. HPGMG

Summary

- Procedure for CrayPat instrumentation
 - pat_build
 - pat_report
- CrayPat API
 - Headers
 - pat_regions
- Run-time environments (PAT_RT_PERFCTR)
 - papi
 - native
 - derive
 - groups

QUESTIONS ?

Acknowledgment

This study is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

