
CUDA Experiences:
Over-Optimization and Future HPC
Carl Pearson1, Simon Garcia De Gonzalo2
Ph.D. candidates, Electrical and Computer Engineering1 / Computer Science2, University of Illinois Urbana-Champaign
Advised by Professor Wen-Mei Hwu

2

CUDA Over-Optimization
In the trenches with ChaNGa
Simon Garcia de Gonzalo (grcdgnz2@illinois.edu)

3

Types	of	bottle	necks	found	in	CUDA	kernels
§ Compute bound:

– Most of the kernel time is spend in arithmetic operations
– Compute cores are kept well supplied by the memory subsystem
– Latency is hidden by computation

§ Bandwidth bound:
– Most of the time spend in memory operations and the kernel approaches peak bandwidth

limit.
– Compute unites are under supplied and generally waiting for data
– Can be improve by explicitly taking advantage of the CUDA memory hierarchy

4

Latency	limited	kernels
§ Characterized by having both low compute

utilization and low memory utilization

§ Low GPU occupancy is the main factor in this
type of limitation.

§ Unlike latency oriented CPUs, GPUs need a
large degree of ILP to hide instruction latency.

§ Common issue for highly optimized kernels
that overuse limited resources that lowers
possible achievable occupancy.

5

Resources	that	limit	occupancy
§ The following table contain the resources that are most likely to cause low occupancy

Accelerator
Maximum

Threads per
SM

Maximum
Blocks per

SM

Shared
Memory per

SM

Maximum
Registers per

Threads

C2070
(Fermi) 1536 8 48KB 63

K20X
(Kepler) 2048 16 48KB 255

M40
(Maxwell) 2048 32 96KB 255

P100
(Pascal) 2048 32 64KB 255

6

Reducing	share	memory	in	ChaNGa	kernels	
§ 5.97KB of shared memory per block was being used
§ Tesla K20X is configured to have 48KB of shared memory per SMX
§ Each SMX was limited to simultaneously execute only 8 blocks (32

warps) out of the possible 16 block (64 warps)
§ What to do:

– Shuffle instruction for reduction

– Some __syncthreads() can be removed due to threads not having to
wait for all threads to read or write to shared memory

7

Reducing	share	memory
§ By using less shared memory we lowered the memory utilization as expected but did

not improve the compute utilization…. We are still Latency limited!

§ Register usage could be the limiting resources.

8

Reducing	registers	usage	
§ 56 registers per thread was being used or 14336 registers per block
§ Tesla K20X is configured to have up to 65536 registers per SMX
§ Each SMX was limited to simultaneously execute only 4 blocks (32 warps) out of the

possible 16 block (64 warps)
§ No direct way of controlling register usage, but we can help the compiler to do a better

job.
§ What to do:

__launch_bounds__(maxThreadsPerBlock, minBlockPerMultiProc)

§ The compiler will derive the number of register it needs per threads to be able to handle
minBlockPerMultiProc*maxThreadsPerBlock per SMX.

NUM_REG LOCAL_MEM NUM_INSTRUCTIONS

W
ar

ps
 p

er
 S

M

9

Reducing	registers	usage	
§ Register usage decreased from 56 to 24 thus utility rose to approximately 70%

§ Further reducing register usage causes spilling onto global memory adversely
affecting execution time!

10

What	does	it	all	mean	in	terms	of	speedup	
§ Two kernels from ChaNGa, N-Body Cosmological application,

– particleGravityComputation
– nodeGravityComputation

§ Both kernels are non-trivial and highly optimized making use of shared
memory.

§ After described latency optimizations:
– particleGravityComputation

• Utilization improved from about 40% to 70%
• 1.66x speedup

– nodeGravityComputation
• Utilization improved from about 30% to 60%
• 2.11x speedup

11

Future HPC Transition
Blue Waters vs. Future Accelerator-Dense Nodes
Carl Pearson (pearson@illinois.edu)

12

Object hit with known field, scattered field
recorded.

Solve large-scale electromagnetic wave
equations numerically to reconstruct object.

Useful for electromagnetics, acoustics,
geophysics, radar, medical imaging, antenna
design.

𝑂

𝑠

𝑟

Application	Background

13

Compute pairwise interactions between discretized object pixels.

Local interactions are spatially binned in a hierarchical manner to compute
N2 interactions in O(N) work.

Near-Field
Clusters

Far-Field
Clusters

Cluster	GridPixel	Grid

𝜆/10

Multilevel	Fast	Multipole Method

14

Region	A Region	B

Basis	Pixels

Level	5

Level	4

Testing	Pixels

Multipole
Expansions

Local
Expansions

Level	3

Far-Field
Interactions

Nearfield
Interactions

Expansions Interpolations Shiftings Translations Near-field
Dense Band-diagonal Diagonal Diagonal Sparse

MLFMM	Schematic

15

Feature XK6 XK7 S822LC
CPU	0 Opteron 6276 Opteron	6276 Power8
CPU	1 Opteron 6276 -- Power8
GPU	0 -- K20x P100	SMX
GPU 1 -- -- P100	SMX
GPU 2 -- -- P100	SMX
GPU 3 -- -- P100	SMX

System	RAM	(CPU	+	GPU) 64	GB 32	GB	+	6	GB 512	GB	+	64	GB
System	Floating-Point	Units 16 8 20

System	CPU	Threads 32 16 160

Blue	Waters	and	S822LC	System	Comparison

16

CPU

GPU GPU

NVLinkNVLink

IBM	Interconnect
CPU

GPU GPU

NVLinkNVLink

MPIMPI MPIMPI

CPU CPU CPU

GPU GPU GPU

Cray
Interconnect

Cray
Interconnect

PCI PCI PCI

MPI MPI MPI

CPU

GPU

Cray
Interconnect

PCI

MPI

Blue Waters S822LC

Blue	Waters	and	S822LC	MLFMM	Execution

17

Sequential CPU Speedup
1T S822LC vs 1T XE: 1.17

Multithreaded CPU Speedup
160T S822LC vs 32T XE: 1.75

GPU Speedup
1GPU S822LC vs 1GPU XK: 5.2

Per-node Speedup
4GPU S822LC vs 1GPU XK: 21.34

MLFMM
Performance

18

Feature K20x Kepler (GK110) P100 Pascal (GP100)
Core Clock 732 MHz 1328 MHz

Global Memory Bandwidth 250 GB/s 720 GB/s
Peak GFLOPs (single / double) 3935 / 1312 9519 / 4760

L2 1.5 MB 4 MB
of SMs 14 56

Register File Size 256 KB 256 KB
L1 48 / 32 / 16 KB 0 KB

Shared Memory 16 / 32 / 48 KB 64 KB
"CUDA Cores" 192 64

Max Resident Blocks 16 32

Kepler	and	Pascal	GPU	Architectures

19

Blue Waters S822LC Speedup
L2L Kernel Time 78.5 ms 9.9 ms 8.0x

MLFMM Time 633 ms 119 ms 5.3x

L2L Occupancy Blue Waters S822LC
Theoretical 43.8 56.2
Achieved 30.7 42.1

Occupancy limited by shared memory
Relative performance improves due to increased shared memory size.

Normalized	Kernel	Executions

20

• Easier to fully utilize CPU FP without tuning performance of each
thread (oversubscription)

• Lots of direct speedup on existing code

• Some kernels can be tuned for even more

Observations

21

Questions

