CUDA Experiences:
Over-Optimization and Future HPC

Carl Pearson’, Sinfon Garcia De Gonzalo?
Ph.D. candidates, Electrical and Computer Engineering! / Computer Science?, University of lllinois Urbana-Champaign

Advised by Professor Wen-Mei Hwu

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ECE ILLINOIS

CUDA Over-Optimization

In the trenches with ChaNGa
Simon Garcia de Gonzalo (gredgnz2@illinois.edu)

ECE ILLINOIS 2 LN

Types of bottle necks found in CUDA kernels

= Compute bound:
— Most of the kernel time is spend in arithmetic operations
— Compute cores are kept well supplied by the memory subsystem
— Latency is hidden by computation

= Bandwidth bound:
— Most of the time spend in memory operations and the kernel approaches peak bandwidth
limit.
— Compute unites are under supplied and generally waiting for data
— Can be improve by explicitly taking advantage of the CUDA memory hierarchy

ECE ILLINOIS 3 L L IRO LS

Latency limited kernels

= Characterized by having both low compute

utilization and low memory utilization oo

= Low GPU occupancy is the main factor in this
type of limitation.

Utilization

= Unlike latency oriented CPUs, GPUs need a
large degree of ILP to hide instruction latency.

= Common issue for highly optimized kernels
that overuse limited resources that lowers

possible achievable occupancy.

ECE ILLINOIS 4

Comput Memory(LoadSore hstucion Unib

I Memory operafons
[Conrol-low operafons

B Arihmefcoperafons
I Memory (Load Sore hstuck.

TLLLINOIS

IIIIIIIIIIIIIIIIIIIIIIIIIIII -CHAMPAIGN

Resources that limit occupancy

The following table contain the resources that are most likely to cause low occupancy

ECE ILLINOIS

5

Maximum Maximum Shared Maximum
Accelerator Threads per Blocks per Memory per Registers per
SM SM SM Threads
€2070 1536 8 48KB 63
(Fermi)
K20X 2048 16 48KB 255
(Kepler)
M40
(Maxwell) 2048 32 96KB 255
P100 2048 32 64KB 255
(Pascal)

TLLLINOIS

IIIIIIIIIIIIIIIIIIIIIIIIIIII -CHAMPAIGN

Reducing share memory in ChaNGa kernels

= 5.97KB of shared memory per block was being used
= Tesla K20X is configured to have 48KB of shared memory per SMX

= Each SMX was limited to simultaneously execute only 8 blocks (32
warps) out of the possible 16 block (64 warps)

= \What to do:

// shared CudaVector3D acc[THREADS PER BLOCK PART];
// shared cudatype pot[THREADS PER BLOCK PART]

// shared cudatype idt2[THREADS PER BLOCK PART];
CudaVector3D acc;

cudatype pot;

cudatype idt2;

— Shuffle instruction for reduction

sumx += shfl down(sumx offset, NODES PER BLOCK PART);
sumy += shfl _down(sumy, offset, NODES PER BLOCK _PART) ;
sumz += shfl ~down(sumz, offset, NODES PER BLOCK _PART) ;
poten += shfl down(poten, offset, NODES PER BLOCK PART);

— Some __ syncthreads() can be removed due to threads not having to
wait for all threads to read or write to shared memory

ECE ILLINOIS 6

Reducing share memory

= By using less shared memory we lowered the memory utilization as expected but did
not improve the compute utilization.... We are still Latency limited!

100°% 100%
90% 90%
80% 80%
70% 70%
§ B0° I Memory operatons s 80
= —
g 50° [Convol-low operafons q .
= B Arihmefcoperafons ,E..
= | 40° N
I Memory (Load Stbre hsruct. =2 40
30° 30
20° 20
10 10
Compute Memory (LoadStre hstucfon Unif Comput Memory (LoadSore hstucion Unif

= Register usage could be the limiting resources.

ECE ILLINOIS 7 [L LI NO LS

= 56 registers per thread was being used or 14336 registers per block
= Tesla K20X is configured to have up to 65536 registers per SMX

= Each SMX was limited to simultaneously execute only 4 blocks (32 warps) out of the
possible 16 block (64 warps)

= No direct way of controlling register usage, but we can help the compiler to do a better

I Reducing registers usage

jOb) Varying Register Count
= What to do: E
__launch_bounds__(maxThreadsPerBlock, minBlockPerMultiProc) .
£
= The compiler will derive the number of register it needs per threads to be | =e«
minBlockPerMultiProc*maxThreadsPerBlock per SMX. o |
NUM_REG ‘ LOCAL_MEM t NUM_INSTRUCTIONS' T

ECE ILLINOIS & LR

Reducing registers usage

= Register usage decreased from 56 to 24 thus utility rose to approximately 70%

100 100%

a0 a0

80° 80

70 70°
5 B0° I Memory operafons g 80
i — [Contol-low operafons i .
N =1 50°
= B Arihmefc operafons %
=2 40° -

B Memory (Load Store hstuct. = 40°

30 30

20° 20

10 10%

Compute Memory(LoadSore hsrucion Unif -
Compute Memory (L1 Shared)

= Further reducing register usage causes spilling onto global memory adversely
affecting execution time!

ECE ILLINOIS o [L LN OLS

I What does it all mean in terms of speedup

= Two kernels from ChaNGa, N-Body Cosmological application,
— particleGravityComputation
— nodeGravityComputation

= Both kernels are non-trivial and highly optimized making use of shared
memory.

= After described latency optimizations:

— particleGravityComputation
Utilization improved from about 40% to 70%
1.66x speedup

— nodeGravityComputation
Utilization improved from about 30% to 60%
2.11x speedup

ECE ILLINOIS 10 L L IRO LS

Future HPC Transition

Blue Waters vs. Future Accelerator-Dense Nodes
Carl Pearson (pearson@illinois.edu)

ECE ILLINOIS 1 LN

I Application Background

Object hit with known field, scattered field
recorded.

Solve large-scale electromagnetic wave
equations numerically to reconstruct object.

Useful for electromagnetics, acoustics, ‘_JJ
geophysics, radar, medical imaging, antenna)
design. °r

ECE ILLINOIS 12 L L IRO LS

I Multilevel Fast Multipole Method

Compute pairwise interactions between discretized object pixels.

Local interactions are spatially binned in a hierarchical manner to compute
N2 interactions in O(N) work.

Pixel Grid Cluster Grid
| Far-Field
) -1-"1~> Clusters
A/10
/10 { > y
1-~.. Near-Field
Y | Clusters
| _ -7

TILLLINOIS

ECE ILLINOIS 13 IIIIIIIIIIIIIIIIIIIIIIIIIIII -CHAMPAIGN

MLFMM Schematic

Level 3 | Region A Region B

Local
o Expansions:

Level 4 ! . -
| i : >Far-FieId
N/ T | . . ., S N | Interactions
l 1

Level 5 | . . : . . :
I' ﬁl\ i ﬂl‘\ | /l\ | /I\ |
| | | | | . . | | | N\ Nearfield
Basis Pixels Nea’ﬁe/d Testing Pixels } Interactions
m Interpolations m Translations Near-field
Dense Band-diagonal Diagonal Diagonal Sparse

ECE ILLINOIS 14 [L LI NO LS

Blue Waters and S822LC System Comparison

__ Featue | XK6____| __XK7____| __ S82AC

CPUO Opteron 6276 Opteron 6276 Power8
CPU1 Opteron 6276 -- Power8
GPUO -- K20x P100 SMX
GPU 1 -- -- P100 SMX
GPU 2 -- -- P100 SMX
GPU 3 -- -- P100 SMX
System RAM (CPU + GPU) 64 GB 32GB+6GB 512 GB + 64 GB
System Floating-Point Units 16 8 20
System CPU Threads 32 16 160

ECE ILLINOIS 15 LR

Blue Waters and S822LC MLFMM Execution

Se

71 IBM Interconn

-
- _—Na

A\

o EEE EEm EE EE S S O O O

o
(@]
()]
[=
[=
o
(O]
| .
- 9 1 2
o = 1 =
|
S, a) o |1
O 10
|
1V
{
{ =
o
(O]
| .
()]
)

[
|
|
|
|
|
|
|
|
I | I l
/'Crav\

e EEm EEm - - o o =

- MPI_
| I

IEHI

AR

ra
Interconnect

.- MPI
| I

—-eem e e o Em e Em e = =

S822L.C

Blue Waters

|3
&
—|=
-4
S
Qls
zZ
<
3
2
Z |z
3
@
—2
3
|5
o
>
=
—|2
5
>
—5

16

ECE ILLINOIS

MLFMM
Performance

Sequential CPU Speedup
1T S822LC vs 1T XE: 1.17

Multithreaded CPU Speedup
160T S822LC vs 32T XE: 1.75

GPU Speedup
1GPU S822LC vs 1GPU XK: 5.2

Per-MLFMM Execution Time (ms)

Per-node Speedup
4GPU S822LC vs 1GPU XK: 21.34

ECE ILLINOIS 17

102 i

10°

104 _

102 i

10°

103
L 10?

101

33333 204
1920 214
619
4 156
17 IIII
1T 32T 1 GPU 4 GPU 16 GPU
(1 XE) (1 XE) (1 XK) (4 XK) (16 XK)
(b)

28409 969

239

1100
26 119
IIIII 29
1T 160T 1 GPU 4 GPU

(1 $822LC) (1 $822LC) (1 $822LC) (1 $822LC)

102

101

-_ 100

L 10

-_ 100

TILLLINOIS

IIIIIIIIIIIIIIIIIIIIIIIIIIII

-CHAMPAIGN

Speedup over Sequential

Kepler and Pascal GPU Architectures
_ Feature | K20xKepler (GK110) | P100 Pascal (GP100)

Core Clock 732 MHz 1328 MHz
Global Memory Bandwidth 250 GB/s 720 GB/s
Peak GFLOPs (single / double) 3935/ 1312 9519 /4760
L2 1.5 MB 4 MB
of SMs 14 56
Register File Size 256 KB 256 KB
L1 48 /32 /16 KB 0 KB
Shared Memory 16/ 32 /48 KB 64 KB
"CUDA Cores" 192 64
Max Resident Blocks 16 32

ECE ILLINOIS 18 LR

I Normalized Kernel Executions

_ Blue Waters S822LC Speedup

L2L Kernel Time /8.5 ms 9.9 ms 8.0x
MLFMM Time 633 ms 119 ms 5.3X
L2L Occupancy | Blue Waters S822L.C
Theoretical 43.8 56.2
Achieved 30.7 42 .1

Occupancy limited by shared memory
Relative performance improves due to increased shared memory size.

ECE ILLINOIS 19 L L IRO LS

I Observations

« Easier to fully utilize CPU FP without tuning performance of each
thread (oversubscription)

 Lots of direct speedup on existing code

e Some kernels can be tuned for even more

ECE ILLINOIS 20 L

ECE ILLINOIS 21 LN

