

Heidi Poxon
Cray Inc.

Topics

NCSA Workshop, February 2013 Cray Inc.
2

●  Introduction

● Steps to using the Cray performance tools

● Automatic profiling analysis

● Performance Counters

Design Goals

NCSA Workshop, February 2013 Cray Inc.
3

● Assist the user with application performance analysis and
optimization
●  Help user identify important and meaningful information from

potentially massive data sets
●  Help user identify problem areas instead of just reporting data
●  Bring optimization knowledge to a wider set of users

●  Focus on ease of use and intuitive user interfaces
●  Automatic program instrumentation
●  Automatic analysis

●  Target scalability issues in all areas of tool development
●  Data management

●  Storage, movement, presentation

Strengths

NCSA Workshop, February 2013 Cray Inc.
4

Provide a complete solution from instrumentation to
measurement to analysis to visualization of data

● Performance measurement and analysis on large systems
●  Automatic Profiling Analysis
●  Load Imbalance
●  HW counter derived metrics
●  Predefined trace groups provide performance statistics for libraries

called by program (blas, lapack, pgas runtime, netcdf, hdf5, etc.)
●  Observations of inefficient performance
●  Data collection and presentation filtering
●  Data correlates to user source (line number info, etc.)
●  Support MPI, SHMEM, OpenMP, UPC, CAF, OpenACC
●  Access to network counters
●  Minimal program perturbation

Application Performance Summary

NCSA Workshop, February 2013 Cray Inc.
5

The Cray Performance Analysis Framework

NCSA Workshop, February 2013 Cray Inc.
6

● Supports traditional post-mortem performance analysis
●  Automatic identification of performance problems

●  Indication of causes of problems
●  Suggestions of modifications for performance improvement

●  pat_build: provides automatic instrumentation
●  CrayPat run-time library collects measurements (transparent to the

user)
●  pat_report performs analysis and generates text reports
●  pat_help: online help utility
●  Cray Apprentice2: graphical visualization tool

●  To access software:
●  module load perftools

Application Instrumentation with pat_build

NCSA Workshop, February 2013 Cray Inc.
7

●  pat_build is a stand-alone utility that instruments the

application for performance collection

● Requires no source code or makefile modification
●  Automatic instrumentation at group (function) level

●  Groups: mpi, io, heap, math SW, …

● Performs link-time instrumentation
●  Requires object files
●  Instruments optimized code
●  Generates stand-alone instrumented program
●  Preserves original binary

Application Instrumentation with pat_build (2)

NCSA Workshop, February 2013 Cray Inc.
8

● Supports two categories of experiments
●  asynchronous experiments (sampling) which capture values from the

call stack or the program counter at specified intervals or when a
specified counter overflows

●  Event-based experiments (tracing) which count some events such as
the number of times a specific system call is executed

● While tracing provides most useful information, it can be
very heavy if the application runs on a large number of
cores for a long period of time

● Sampling can be useful as a starting point, to provide a
first overview of the work distribution

Sampling with Line Number information

NCSA Workshop, February 2013 Cray Inc.
9

Where to Run Instrumented Application

NCSA Workshop, February 2013 Cray Inc.

● By default, data files are written to the execution directory

● Default behavior requires file system that supports record
locking, such as Lustre (/mnt/snx3/… , /lus/…, /scratch/
…,etc.)
●  Can use PAT_RT_EXPFILE_DIR to point to existing directory that

resides on a high-performance file system if not execution directory

● Number of files used to store raw data
●  1 file created for program with 1 – 256 processes
●  √n files created for program with 257 – n processes
●  Ability to customize with PAT_RT_EXPFILE_MAX

● See intro_craypat(1) man page

10

CrayPat Runtime Options

NCSA Workshop, February 2013 Cray Inc.
11

● Runtime controlled through PAT_RT_XXX environment
variables

● See intro_craypat(1) man page

● Examples of control
●  Enable full trace
●  Change number of data files created
●  Enable collection of HW counters
●  Enable collection of network counters
●  Enable tracing filters to control trace file size (max threads, max call

stack depth, etc.)

NCSA Workshop, February 2013 Cray Inc.

Example Runtime Environment Variables

● Optional timeline view of program available
●  export PAT_RT_SUMMARY=0
●  View trace file with Cray Apprentice2

● Number of files used to store raw data:
●  1 file created for program with 1 – 256 processes
●  √n files created for program with 257 – n processes
●  Ability to customize with PAT_RT_EXPFILE_MAX

● Request hardware performance counter information:
●  export PAT_RT_HWPC=<HWPC Group>
●  Can specify events or predefined groups

12

pat_report

NCSA Workshop, February 2013 Cray Inc.
13

●  Combines information from binary with raw performance
data

●  Performs analysis on data

●  Generates text report of performance results

●  Generates customized instrumentation template for
automatic profiling analysis

●  Formats data for input into Cray Apprentice2

Why Should I generate a “.ap2” file?

●  The “.ap2” file is a self contained compressed

performance file

● Normally it is about 5 times smaller than the “.xf” file

● Contains the information needed from the application
binary
●  Can be reused, even if the application binary is no longer available or

if it was rebuilt

●  It is the only input format accepted by Cray Apprentice2

NCSA Workshop, February 2013 Cray Inc.
14

Files Generated and the Naming Convention

File Suffix Description

a.out+pat Program instrumented for data collection

a.out…s.xf

Raw data for sampling experiment, available after
application execution

a.out…t.xf Raw data for trace (summarized or full) experiment,
available after application execution

a.out…st.ap2 Processed data, generated by pat_report, contains
application symbol information

a.out…s.apa Automatic profiling pnalysis template, generated by
pat_report (based on pat_build –O apa experiment)

a.out+apa Program instrumented using .apa file

MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from
automatic grid detection an reorder suggestions

NCSA Workshop, February 2013 Cray Inc.
15

NCSA Workshop, February 2013
16

Cray Inc.

Program Instrumentation - Automatic Profiling
Analysis

NCSA Workshop, February 2013 Cray Inc.
17

● Automatic profiling analysis (APA)

●  Provides simple procedure to instrument and collect performance data
for novice users

●  Identifies top time consuming routines

●  Automatically creates instrumentation template customized to
application for future in-depth measurement and analysis

Steps to Collecting Performance Data

NCSA Workshop, February 2013 Cray Inc.
18

●  Access performance tools software
 % module load perftools

●  Build application keeping .o files (CCE: -h keepfiles)

 % make clean
 % make

●  Instrument application for automatic profiling analysis
●  You should get an instrumented program a.out+pat

 % pat_build –O apa a.out

●  Run application to get top time consuming routines
●  You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

 % aprun … a.out+pat (or qsub <pat script>)

Steps to Collecting Performance Data (2)

NCSA Workshop, February 2013 Cray Inc.

●  Generate report and .apa instrumentation file
% pat_report <sdatafile>.xf > my_sampling_report

Or

% pat_report –o my_sampling_report [<sdatafile>.xf |

<sdatadir>]

●  Inspect .apa file and sampling report

●  Verify if additional instrumentation is needed

19

APA File Example

You can edit this file, if desired, and use it!
to reinstrument the program for tracing like this:!
#!
pat_build -O standard.cray-

xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-Oapa.512.quad.cores.seal.
090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.14999.xf.xf.apa!

#!
These suggested trace options are based on data from:!
#!
/home/users/malice/pat/Runs/Runs.seal.pat5001.2009Apr04/./pat.quad/

homme/standard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-Oapa.
512.quad.cores.seal.
090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.14999.xf.xf.cdb!

--!
!
HWPC group to collect by default.!
!
 -Drtenv=PAT_RT_HWPC=1 # Summary with TLB metrics.!
!
--!
!
Libraries to trace.!
!
 -g mpi!
!
--!
!
User-defined functions to trace, sorted by % of samples.!
!
The way these functions are filtered can be controlled with!
pat_report options (values used for this file are shown):!
#!
-s apa_max_count=200 No more than 200 functions are listed.!
-s apa_min_size=800 Commented out if text size < 800 bytes.!
-s apa_min_pct=1 Commented out if it had < 1% of samples.!
-s apa_max_cum_pct=90 Commented out after cumulative 90%.!
!
Local functions are listed for completeness, but cannot be traced.!
!
 -w # Enable tracing of user-defined functions.!
 # Note: -u should NOT be specified as an additional option.!

31.29% 38517 bytes!
 -T prim_advance_mod_preq_advance_exp_!
!
15.07% 14158 bytes!
 -T prim_si_mod_prim_diffusion_!
!
9.76% 5474 bytes!
 -T derivative_mod_gradient_str_nonstag_!
!
. . .!
!
2.95% 3067 bytes!
 -T forcing_mod_apply_forcing_!
!
2.93% 118585 bytes!
 -T column_model_mod_applycolumnmodel_!
!
Functions below this point account for less than 10% of samples.!
!
0.66% 4575 bytes!
-T bndry_mod_bndry_exchangev_thsave_time_!
!
0.10% 46797 bytes!
-T baroclinic_inst_mod_binst_init_state_!
!
0.04% 62214 bytes!
-T prim_state_mod_prim_printstate_!
!
. . . !
0.00% 118 bytes!
-T time_mod_timelevel_update_!
!
--!
!
 -o preqx.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x+apa

New instrumented program.!
!
 /.AUTO/cray/css.pe_tools/malice/craypat/build/pat/2009Apr03/2.1.56HD/

amd64/homme/pgi/pat-5.0.0.2/homme/2005Dec08/build.Linux/preqx.cray-
xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x # Original program.!

NCSA Workshop, February 2013 Cray Inc.

Sli
de
20

Generating Profile from APA

NCSA Workshop, February 2013 Cray Inc.
21

●  Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

●  Run application

% aprun … a.out+apa (or qsub <apa script>)

●  Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf |
<datadir>]

●  View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

Program Instrumentation Tips

NCSA Workshop, February 2013 Cray Inc.
22

●  Large programs
●  Scaling issues more dominant
●  Use automatic profiling analysis to quickly identify top time consuming

routines
●  Use loop statistics to quickly identify top time consuming loops

● Small (test) or short running programs
●  Scaling issues not significant
●  Can skip first sampling experiment and directly generate profile
●  For example: % pat_build -u -g upc my_program

Example Experiments

NCSA Workshop, February 2013 Cray Inc.
23

●  > pat_build –O apa
●  Gets you top time consuming routines
●  Lightest-weight sampling

●  > pat_build –u –g mpi ./my_program
●  Collects information about user functions and MPI

●  > pat_build –w ./my_program
●  Collects information for MAIN
●  Lightest-weight tracing

●  > pat_build –gnetcdf,mpi ./my_program
●  Collects information about netcdf routines and MPI

●  blas Basic Linear Algebra subprograms
●  caf Co-Array Fortran (Cray CCE compiler only)
●  hdf5 manages extremely large data collection
●  heap dynamic heap
●  io includes stdio and sysio groups
●  lapack Linear Algebra Package
●  math ANSI math
●  mpi MPI
●  omp OpenMP API
●  pthreads POSIX threads
●  shmem SHMEM
●  sysio I/O system calls
●  system system calls
●  upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see pat_build(1) man page

Predefined Trace Wrappers (-g tracegroup)

24
NCSA Workshop, February 2013 Cray Inc.

Specific Tables in pat_report

heidi@kaibab:/lus/scratch/heidi> pat_report -O –h

pat_report: Help for -O option:
Available option values are in left column, a prefix can be
specified:
 ct -O calltree
 defaults <Tables that would appear by default.>
 heap -O heap_program,heap_hiwater,heap_leaks
 io -O read_stats,write_stats
 lb -O load_balance
 load_balance -O lb_program,lb_group,lb_function
 mpi -O mpi_callers

 D1_D2_observation Observation about Functions with low D1+D2
cache hit ratio
 D1_D2_util Functions with low D1+D2 cache hit ratio
 D1_observation Observation about Functions with low D1
cache hit ratio
 D1_util Functions with low D1 cache hit ratio
 TLB_observation Observation about Functions with low TLB
refs/miss
 TLB_util Functions with low TLB refs/miss

 25

NCSA Workshop, February 2013 Cray Inc.

●  Fortran
include “pat_apif.h”
…
call PAT_region_begin(id, “label”, ierr)
do i = 1,n
…
enddo
call PAT_region_end(id, ierr)

● C & C++
include <pat_api.h>
…
ierr = PAT_region_begin(id, “label”);
< code segment >
ierr = PAT_region_end(id);

CrayPat API - For Fine Grain Instrumentation

26
NCSA Workshop, February 2013 Cray Inc.

NCSA Workshop, February 2013
27

Cray Inc.

Hardware Performance Counters - IL

NCSA Workshop, February 2013 Cray Inc.
28

● AMD Family 15H Opteron Hardware Performance
Counters
●  Each node has 4 48-bit NorthBridge counters

●  Each core has 6 48-bit performance counters
●  Not all events can be counted on all counters
●  Supports multi-events

●  events have a maximum count per clock that exceeds one event per clock

PAPI Predefined Events

NCSA Workshop, February 2013 Cray Inc.
29

● Common set of events deemed relevant and useful for
application performance tuning
●  Accesses to the memory hierarchy, cycle and instruction counts,

functional units, pipeline status, etc.
●  The “papi_avail” utility shows which predefined events are available on

the system – execute on compute node

● PAPI also provides access to native events
●  The “papi_native_avail” utility lists all AMD native events available on

the system – execute on compute node

● PAPI uses perf_events Linux subsystem

●  Information on PAPI and AMD native events
●  pat_help counters
●  man intro_papi (points to PAPI documentation: http://icl.cs.utk.edu/

papi/)
●  http://lists.eecs.utk.edu/pipermail/perfapi-devel/2011-January/

004078.html

Hardware Counters Selection

NCSA Workshop, February 2013 Cray Inc.
30

● HW counter collection enabled with PAT_RT_HWPC
environment variable

● PAT_RT_HWPC <set number> | <event list>

●  A set number can be used to select a group of predefined hardware
counters events (recommended)
●  CrayPat provides 23 groups on the Cray XT/XE systems
●  See pat_help(1) or the hwpc(5) man page for a list of groups

●  Alternatively a list of hardware performance counter event names can
be used

●  Hardware counter events are not collected by default

HW Counter Information Available in Reports

NCSA Workshop, February 2013 Cray Inc.
31

● Raw data

● Derived metrics

● Desirable thresholds

Predefined Interlagos HW Counter Groups

NCSA Workshop, February 2013 Cray Inc.
32

See pat_help -> counters -> amd_fam15h –> groups
 0: Summary with instructions metrics
 1: Summary with TLB metrics
 2: L1 and L2 Metrics
 3: Bandwidth information
 4: <Unused>
 5: Floating operations dispatched
 6: Cycles stalled, resources idle
 7: Cycles stalled, resources full
 8: Instructions and branches
 9: Instruction cache
 10: Cache Hierarchy (unsupported for IL)

Predefined Interlagos HW Counter Groups
(cont’d)

NCSA Workshop, February 2013 Cray Inc.
33

 11: Floating point operations dispatched
 12: Dual pipe floating point operations dispatched
 13: Floating point operations SP
 14: Floating point operations DP
 19: Prefetchs
 20: FP, D1, TLB, MIPS
 21: FP, D1, TLB, Stalls
 22: D1, TLB, MemBW
 23: FP, D1, D2, and TLB
 default: group 23

Support for L3 cache counters coming in 3Q2013

New HW counter groups for Interlagos (6
counters)

NCSA Workshop, February 2013 Cray Inc.
34

● Group 20: FP, D1, TLB, MIPS
 PAPI_FP_OPS
 PAPI_L1_DCA
 PAPI_L1_DCM
 PAPI_TLB_DM
 DATA_CACHE_REFILLS_FROM_NORTHBRIDGE
 PAPI_TOT_INS

● Group 21: FP, D1, TLB, Stalls
 PAPI_FP_OPS
 PAPI_L1_DCA
 PAPI_L1_DCM
 PAPI_TLB_DM
 DATA_CACHE_REFILLS_FROM_NORTHBRIDGE
 PAPI_RES_STL

 PAPI_TLB_DM Data translation lookaside buffer misses
 PAPI_L1_DCA Level 1 data cache accesses
 PAPI_FP_OPS Floating point operations
 DC_MISS Data Cache Miss
 User_Cycles Virtual Cycles
==
USER
--
 Time% 98.3%
 Time 4.434402 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 4500.0 calls
 PAPI_L1_DCM 14.820M/sec 65712197 misses
 PAPI_TLB_DM 0.902M/sec 3998928 misses
 PAPI_L1_DCA 333.331M/sec 1477996162 refs
 PAPI_FP_OPS 445.571M/sec 1975672594 ops
 User time (approx) 4.434 secs 11971868993 cycles 100.0%Time
 Average Time per Call 0.000985 sec
 CrayPat Overhead : Time 0.1%
 HW FP Ops / User time 445.571M/sec 1975672594 ops 4.1%peak(DP)
 HW FP Ops / WCT 445.533M/sec
 Computational intensity 0.17 ops/cycle 1.34 ops/ref
 MFLOPS (aggregate) 1782.28M/sec
 TLB utilization 369.60 refs/miss 0.722 avg uses
 D1 cache hit,miss ratios 95.6% hits 4.4% misses
 D1 cache utilization (misses) 22.49 refs/miss 2.811 avg hits
==

Example: HW counter data and Derived Metrics

NCSA Workshop, February 2013 Cray Inc.
35

PAT_RT_HWPC=1
 Flat profile data
 Raw counts
 Derived metrics

PAT_RT_HWPC=2 (L1 and L2 Metrics)

==
USER
--
 Time% 98.3%
 Time 4.436808 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 4500.0 calls
 DATA_CACHE_REFILLS:
 L2_MODIFIED:L2_OWNED:
 L2_EXCLUSIVE:L2_SHARED 9.821M/sec 43567825 fills
 DATA_CACHE_REFILLS_FROM_SYSTEM:
 ALL 24.743M/sec 109771658 fills
 PAPI_L1_DCM 14.824M/sec 65765949 misses
 PAPI_L1_DCA 332.960M/sec 1477145402 refs
 User time (approx) 4.436 secs 11978286133 cycles 100.0%Time
 Average Time per Call 0.000986 sec
 CrayPat Overhead : Time 0.1%
 D1 cache hit,miss ratios 95.5% hits 4.5% misses
 D1 cache utilization (misses) 22.46 refs/miss 2.808 avg hits
 D1 cache utilization (refills) 9.63 refs/refill 1.204 avg uses
 D2 cache hit,miss ratio 28.4% hits 71.6% misses
 D1+D2 cache hit,miss ratio 96.8% hits 3.2% misses
 D1+D2 cache utilization 31.38 refs/miss 3.922 avg hits
 System to D1 refill 24.743M/sec 109771658 lines
 System to D1 bandwidth 1510.217MB/sec 7025386144 bytes
 D2 to D1 bandwidth 599.398MB/sec 2788340816 bytes
==

NCSA Workshop, February 2013 Cray Inc.
36

NCSA Workshop, February 2013
37

Cray Inc.

XE6 Node (Gaea)

Gemini

10 12X Gemini
Channels

(Each Gemini
acts like two
nodes on the

3D Torus)

HT 3

HT 3

Cray Baker Node
Characteristics

Number of
Cores

32*

Peak
Performance

~300 Gflops/s

Memory Size 64 GB per node

Memory
Bandwidth

85 GB/sec

High Radix
YARC Router
with adaptive

Routing

168 GB/sec
capacity

Cray Inc.
38

NCSA Workshop, February 2013

●  Fast Memory Access (FMA) – fine grain remote PUT/GET
● Block Transfer Engine (BTE) – offload for long transfers
● Completion Queue (CQ) – client notification
● Atomic Memory Op (AMO) – fetch&add, etc.

Gemini Network Interface

Cray Inc.

HT
3

Ca
ve

vc0

vc1

vc1

vc0

LB Ring

LB
LM

NL

FMA

CQ

NPT

RMT net req

H
A
R
B

net
rsp

ht p
ireq

ht treq p

ht irsp

ht np
ireq

ht np req

ht np req
net req

ht p req O
R
B

RAT

NAT

BTE

net
req

net
rsp

ht treq np
ht trsp net

req
net
req

net
req

net
req

net
reqnet req

ht p req
ht p req

ht p req net rsp

CLM

AMO net rsp headers

T
A
R
B

net req
net rsp

S
S
I
D

Ro
ut

er
 T

ile
s

NCSA Workshop, February 2013
39

Overview

NCSA Workshop, February 2013 Cray Inc.
40

●  2 categories of performance counters
●  NIC – record information about data moving through the Network

Interface Controller
●  2 NICs per Gemini ASIC, each attached to a compute node
●  Counters reflect network transfers beginning and ending on the node
●  Easy to associate with an application
●  Each NIC connects to a different node, running a separate OS instance

●  Router tiles –
●  Available on a per-Gemini basis
●  48 router tiles, arranged in 6x8 grid
●  8 processor tiles connect to each of the two NICs (called PTILEs)

●  Data is associated with any traffic from the 2 nodes connected to the Gemini
●  40 network tiles (NTILEs) connect to the other Gemini’s on the system

●  Data is associated with any traffic passing through the router (not necessarily from
your application)

Using the Tools to Monitor Gemini Counters

NCSA Workshop, February 2013 Cray Inc.
41

● Network counter events are not collected by default

● Access to counter information is expensive (on the order

of 2 us for 1 counter)

● We suggest you do not collect any other performance data
when collecting network counters as they can skew the
non-counter results

● When collecting counters, ALPS will not place a different
job on the same Gemini (the second node)

Using the Tools to Monitor Gemini Counters (2)

NCSA Workshop, February 2013 Cray Inc.
42

● Network counter collection enabled with PAT_RT_NWPC

environment variable

● PAT_RT_NWPC <event list> | <file containing event list>

● See the nwpc(5) man page for a list of groups
● See the intro_craypat(1) man page for environment

variables that enable network counters

● See “Using the Cray Gemini Hardware Counters” available
at http://docs.cray.com

How to Collect Network Statistics

NCSA Workshop, February 2013 Cray Inc.
43

●  Instrument program for tracing:
 $	
 pat_build	
 -­‐w	
 my_program	

● Enable and choose network counter collection:

 $	
 export	
 PAT_RT_NWPC=GM_ORB_PERF_VC0_STALLED	

● Run program:

 $	
 aprun	
 my_program+pat	

Example Default Gemini Counter Output

NCSA Workshop, February 2013 Cray Inc.
44

Notes for table 2:
 Table option:
 -O profile_nwpc
 Options implied by table option:
 -d ti%@0.95,ti,N -b gr,fu,ni=HIDE -s show_data=rows

 The Total value for each data item is the sum for the Group values.
 The Group value for each data item is the sum for the Function values.
 The Function value for each data item is the avg for the Node Id values.
 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with Time% > 0.95.
 (To set thresholds to zero, specify: -T)

 Percentages at each level are of the Total for the program.
 (For percentages relative to next level up, specify:
 -s percent=r[elative])

Table 2: NWPC Data by Function Group and Function
Group / Function / Node Id=HIDE
==
 Total
--
 Time% 100.0%
 Time 405.190432 secs
 GM_TILE_PERF_VC0_PHIT_CNT:0:0 1668962112
 GM_TILE_PERF_VC1_PHIT_CNT:0:0 156579492
 GM_TILE_PERF_VC0_PKT_CNT:0:0 52400892
 GM_TILE_PERF_VC1_PKT_CNT:0:0 52193128

Other Views of Network Counter Data

NCSA Workshop, February 2013 Cray Inc.
45

● By default, counter totals are provided

● Can view counters per NID

● Mesh coordinates for job available as of perftools/6.0.0
●  Can look at counters along the X, Y, or Z coordinates

● Can generate csv file to plot data

Other Views of Network Counter Data

NCSA Workshop, February 2013 Cray Inc.
46

●  Can generate csv file to plot data:
 $	
 pat_report	
 -­‐s	
 content=tables	
 -­‐s	
 show_data=csv	
 \	

	
 -­‐s	
 notes=hide	
 =s	
 sort_by_pe=yes	
 -­‐d	
 N	
 -­‐b	
 pe	

	

●  What does this mean?...

●  -s content=tables
●  Only include table data (exclude job and environment information)

●  -s show_data=csv
●  Dump data in csv format

●  -s notes=hide
●  Don’t include table notes in output

●  -s sort_by_pe=yes
●  Sort data by PE

●  -d N
●  Display all available network events (1 per column)

●  -b pe
●  Display each entry in table by PE

Example Counters

NCSA Workshop, February 2013 Cray Inc.
47

Are the routers used by your program congested because of
your program or because of other traffic on the system?

● Ratio of the change in stall counters to the change in sum

of phit counters

●  The following counters are on a per Gemini router tile
basis (48 tiles per Gemini) * 3 counters per tile:
●  GM_TILE_PERF_VC0_PHIT_CNT
●  GM_TILE_PERF_VC1_PHIT_CNT
●  GM_TILE_PERF_INQ_STALL

●  Degree of congestion =
GM_TILE_PERF_INQ_STALL / (GM_TILE_PERF_VC0_PHIT_CNT + GM_TILE_PERF_VC1_PHIT_CNT)

Interpreting Counters

NCSA Workshop, February 2013 Cray Inc.
48

●  Including network counters in application performance
analysis is newer territory for users

● Experimentation is needed to find and understand the
most helpful counters

● Goal is to use our tools infrastructure (derived metrics,

and performance analysis) to help interpret counters

●  Focus of the Cray performance tools is to provide
feedback that developers can act on to improve the
performance of their program

● We are investigating counters to suggest to users

● User feedback on helpful counters is welcome

Cray PAPI Network Component

NCSA Workshop, February 2013 Cray Inc.
49

● Coming in March 2013

● Available for 3rd party tool developers

● Used internally by CrayPat

● Counter events documented through papi_native_avail

NCSA Workshop, February 2013
50

Cray Inc.

