

Heidi Poxon
Cray Inc.

Topics

NCSA Workshop, February 2013 Cray Inc.
2

● GPU support in the Cray performance tools

● CUDA proxy

● MPI support for GPUs (GPU-to-GPU)

NCSA Workshop, February 2013
3

Cray Inc.

Programming Models Supported for the GPU

NCSA Workshop, February 2013 Cray Inc.

● Goal is to provide whole program analysis for programs
written for x86 or hybrid x86 + GPUs

● Development focus is on support of CCE with OpenACC
directives

● Cray XK programming models supported

●  OpenACC, CUDA, PGI acc (or OpenACC) directives

4

Collecting GPU Statistics for OpenACC

NCSA Workshop, February 2013 Cray Inc.
5

●  Load PrgEnv-cray module
●  Load perftools module

●  To enable OpenACC
●  module load craype-accel-nvidia35

●  Instrument binary for tracing and collecting GPU statistics

(must be tracing, not sampling)
●  pat_build –u –g mpi,blas my_program

● Run application

● Create report with GPU statistics
●  pat_report my_program.xf > GPU_stats_report

Analyze Performance of Accelerated Program

NCSA Workshop, February 2013 Cray Inc.

● Statistics collected for programs with OpenACC directives
●  Number of GPUs used in the job
●  Host time for kernel launches, data copies and synchronization with

the accelerator
●  Accelerator time for kernel execution and data copies
●  Data copy size to and from the accelerator
●  Kernel grid size
●  Block size
●  Amount of shared memory dynamically allocated for kernel
●  GPU performance counters
●  Derived metrics based on performance counters

6

Apprentice2 Overview

NCSA Workshop, February 2013 Cray Inc.
7

Profile with GPU Information

NCSA Workshop, February 2013 Cray Inc.
8

Top Time Consuming Routines or Regions

NCSA Workshop, February 2013 Cray Inc.
9

Call Tree with GPU regions

NCSA Workshop, February 2013 Cray Inc.
10

Example Accelerator Statistics

NCSA Workshop, February 2013 Cray Inc.

Table 1: Time and Bytes Transferred for Accelerator Regions
 Host | Host | Acc | Acc Copy | Acc Copy | Calls |Calltree
 Time% | Time | Time | In | Out | | PE=HIDE
 | | | (MBytes) | (MBytes) | |
 100.0% | 2.750 | 2.015 | 2812.760 | 13.568 | 103 |Total
|--
| 100.0% | 2.750 | 2.015 | 2812.760 | 13.568 | 103 |lbm3d2p_d_
| | | | | | | lbm3d2p_d_.ACC_DATA_REGION@li.104
|||--
3|| 63.5% | 1.747 | 1.747 | 2799.192 | -- | 1 |lbm3d2p_d_.ACC_COPY@li.104
3|| 22.1% | 0.609 | 0.088 | 12.304 | 12.304 | 36 |streaming_
||||---
4||| 20.6% | 0.566 | 0.046 | 12.304 | 12.304 | 27 |streaming_exchange_
5||| | | | | | | streaming_exchange_.ACC_DATA_REGION@li.526
6||| 18.8% | 0.517 | -- | -- | -- | 1 | streaming_exchange_.ACC_DATA_REGION@li.526(exclusive)
4||| 1.6% | 0.043 | 0.042 | -- | -- | 9 |streaming_.ACC_DATA_REGION@li.907
5||| 1.1% | 0.031 | 0.031 | -- | -- | 4 | streaming_.ACC_REGION@li.909
6||| 1.1% | 0.031 | -- | -- | -- | 1 | streaming_.ACC_REGION@li.909(exclusive)
||||===

...

11

Example Kernel Statistics – Grid, Block

NCSA Workshop, February 2013 Cray Inc.

Table 2: Kernel Stats for Accelerator Regions
 Avg | Avg | Avg | Avg | Avg | Avg |Function
 Grid | Grid | Grid | Block | Block | Block |
 X | Y | Z | X Dim | Y Dim | Z Dim |
 Dim | Dim | Dim | | | |
|--
| 62163 | 1 | 1 | 1024 | 1 | 1 |streaming_.ACC_KERNEL@li.909
| 402 | 1 | 1 | 128 | 1 | 1 |grad_exchange_.ACC_KERNEL@li.443
| 402 | 1 | 1 | 128 | 1 | 1 |grad_exchange_.ACC_KERNEL@li.467
| 402 | 1 | 1 | 128 | 1 | 1 |grad_exchange_.ACC_KERNEL@li.476
| 402 | 1 | 1 | 128 | 1 | 1 |grad_exchange_.ACC_KERNEL@li.500
| 400 | 1 | 1 | 512 | 1 | 1 |cal_velocity_.ACC_KERNEL@li.1126
| 400 | 1 | 1 | 512 | 1 | 1 |collisiona_.ACC_KERNEL@li.474
| 400 | 1 | 1 | 128 | 1 | 1 |collisionb_.ACC_KERNEL@li.597
| 400 | 1 | 1 | 128 | 1 | 1 |wall_boundary_.ACC_KERNEL@li.973
| 400 | 1 | 1 | 128 | 1 | 1 |collisionb_.ACC_KERNEL@li.629
| 400 | 1 | 1 | 512 | 1 | 1 |recolor_.ACC_KERNEL@li.823
| 128 | 1 | 1 | 64 | 1 | 1 |injection_.ACC_KERNEL@li.1281
| 128 | 1 | 1 | 128 | 1 | 1 |streaming_exchange_.ACC_KERNEL@li.829
| 128 | 1 | 1 | 128 | 1 | 1 |streaming_exchange_.ACC_KERNEL@li.729
| 128 | 1 | 1 | 128 | 1 | 1 |streaming_exchange_.ACC_KERNEL@li.641
| 128 | 1 | 1 | 128 | 1 | 1 |streaming_exchange_.ACC_KERNEL@li.538
| 101 | 1 | 1 | 128 | 1 | 1 |collisionb_.ACC_KERNEL@li.612
| 101 | 1 | 1 | 128 | 1 | 1 |set_boundary_micro_press_.ACC_KERNEL@li.299
| 101 | 1 | 1 | 128 | 1 | 1 |set_boundary_macro_press2_.ACC_KERNEL@li.259
| 14 | 1 | 1 | 256 | 1 | 1 |streaming_.ACC_KERNEL@li.919
|==

12

● Enable collection similarly to CPU counter collection:
●  GPU: PAT_RT_ACCPC=group or events
●  CPU: PAT_RT_HWPC=group or events
●  NPU: PAT_RT_NWPC=group or events

● Enabling GPU counters causes change in behavior of
application:
●  Host needs to synchronize with the accelerator at each event (since

accelerator executes asynchronously with the host)

●  Can be seen through accelerator table
●  No counters: time spent waiting for kernel to complete is shown with

ACC_SYNC_WAIT (a synchronization created by the compiler)

●  Counters: perftools syncs with accelerator with each event so Host Time is
exclusive time for the containing region (since waiting occurs within the
event’s trace point instead of in the compiler sync). Note “(exclusive)” in
report.

Accelerator Hardware Performance Counters

NCSA Workshop, February 2013 Cray Inc.
13

● A predefined set of groups has been created for ease of
use
●  Combines events that can be counted together

● ACCPC groups start at 1000, and will be incremented by
100 as new families of accelerators are supported

● Specify group by number or name
●  PAT_RT_ACCPC=1000 OR
●  PAT_RT_ACCPC=inst_exec_gst

● See accpc(5) and accpc_k20(5) man pages for list of
groups and their descriptions

Accelerator HW Counter Groups

NCSA Workshop, February 2013 Cray Inc.
14

Groups and Derived Metrics

NCSA Workshop, February 2013 Cray Inc.
15

●  Groups 1000 and 1001 generate derived metrics

●  Example

Group 1000, sm_eff_ach_occ!
!
active_warps !
"Accumulated number of active warps per cycle. For
every cycle it increments by the number of active
warps in the cycle which can be in the range 0 to
64."!
!
active_cycles !
"Number of cycles a multiprocessor has at least one
active warp.”!
!
warps_launched !
"Number of warps launched."!

NCSA Workshop, February 2013
16

Cray Inc.

CUDA Proxy (NVIDIA’s Hyper-Q)

NCSA Workshop, February 2013 Cray Inc.
17

● Allows multiple processes to share a single GPU context
(context can be thought of as a single view (shared virtual
memory space) of the device

● Allows for overlap of kernels with memcpys without
explicit use of streams (useful if you don’t want to put
kernels into streams yourself)

● Disabled by default

●  The proxy server creates the shared GPU context, man-
ages its clients (MPI ranks), and issues work to the GPU
on behalf of its clients.

CUDA Proxy (cont’d)

NCSA Workshop, February 2013 Cray Inc.
18

● How to use

●  > setenv CRAY_CUDA_PROXY 1

●  Run with more than 1 MPI ranks per node

● Caveats

●  Cannot debug or profile applications when the CUDA proxy is enabled
●  NVIDIA is working on lifting this restriction

●  Need to work out how to associated GPU requests to the correct MPI rank
●  Since CUPTI doesn’t support Hyper-Q, data collection by CrayPat

through CUPTI is not available (GPU counters, kernel statistics)

NCSA Workshop, February 2013
19

Cray Inc.

GPU-to-GPU Optimization Feature

Cray Inc.
20

● Coming in February 2013

● Set MPICH_RDMA_ENABLED_CUDA=1

● Pass GPU pointer directly to MPI point-to-point or
collectives

NCSA Workshop, February 2013

Example without GPU-to-GPU...

if (rank == 0) {
 // Copy from device to host, then send.
 cudaMemcpy(host_buf, device_buf, …);

 MPI_Send(host_buf, …);
} else if (rank == 1) {

 // Receive, then copy from host to device.
 MPI_Recv(host_buf,...);
 cudaMemcpy(device_buf, host_buf,...);

}

Cray Inc.
21

NCSA Workshop, February 2013

Example with GPU-to-GPU...

if (rank == 0) {
 // Send device buffer.
 MPI_Send(device_buf, …);
} else if (rank == 1) {
 // Receive device buffer.
 MPI_Recv(device_buf,...);
}

Cray Inc.
22

NCSA Workshop, February 2013

GPU-to-GPU Optimization Specifics

Cray Inc.
23

● Under the hood (i.e., in the GNI netmod), GPU-to-GPU
messages are pipelined to improve performance (only
applies to long message transfer aka rendezvous
messages)

●  The goal is to overlap communication between the GPU
and the host, and the host and the NIC

●  Ideally, this would hide one of the two memcpy's

● We see up to a 50% performance gain.

NCSA Workshop, February 2013

GPU-to-GPU optimization (Cont’d)

Cray Inc.
24

● On the send side (similar for recv. side)...

● Data is prefetched from the GPU using
cudaMemcpyAsync.

● Data that has already been transferred to the host is sent
over the network (this is off-loaded to the BTE engine).

●  This allows for overlap between communication and
computation.

NCSA Workshop, February 2013

Example GPU-to-GPU overlap
Since asynchronous cudaMemcpy's are used internally, it

makes sense to do something like this...
if (rank == 0) {

 MPI_Isend(device_buf, …, &sreq);

 while (work_to_do) [do some work]

 MPI_Wait(&sreq, MPI_STATUS_IGNORE);

} else if (rank == 1)

 MPI_Irecv(device_buf,..., &rreq);

 while (nothing_better_to_do) [do some work]

 MPI_Wait(&rreq, MPI_STATUS_IGNORE);

}

Cray Inc.
25

NCSA Workshop, February 2013

NCSA Workshop, February 2013
26

Cray Inc.

