
Final Report: The Super Instruction Architecture

Victor Lotrich Nakul Jindal Erik Deumens Rodney Bartlett

Beverly A Sanders

1 Abstract

Important classes of problems in computational chemistry, notably coupled cluster methods,
consist of solutions to complicated expressions defined in terms of tensors. Tensors are repre-
sented by multidimensional arrays that are typically extremely large, thus requiring distribution
or backing on disk. A parallel programming environment, the Super Instruction Architecture
(SIA) comprising a domain specific programming language Super Instruction Assembly Lan-
guage (SIAL) and its runtime system Super Instruction Processor (SIP) has been developed
which is specialized for this class of problems. An important feature of SIAL is that algorithms
are expressed in terms of blocks (or tiles) of multidimensional arrays rather than individual
floating point numbers. The computational chemistry package ACES III, has been developed
using the SIA platform, and has successfully ported to Blue Waters and used to study processes
involving biological enzymes and organic explosives. ACES III has also been extended to allow
it to e↵ectively utilize GPUs. Speedups on Blue Waters from utilizing GPUs relative to CPUs in
the range of 2.0-2.2 for a CCSD calculation and from 3.4-3.7 for CCSD(T) have been obtained.

2 Introduction

Domain experts developing new computational chemistry methods in the context of the SIA
[SBD+10] and ACES III[LFP+08, ACE] express their algorithms in SIAL, a simple parallel DSL
providing a parallel loop construct and intrinsic support for distributed and disk backed arrays.
Memory management, communication, and I/O are provided by the runtime system.

An important feature of SIAL is that algorithms are expressed in terms of blocks (or tiles)
of multidimensional arrays rather than individual floating point numbers. Programming with
blocks enhances programmer productivity by eliminating the need for tedious and error prone
index arithmetic. Frequently used super instructions such as tensor contractions are intrinsic
and supported by the language syntax; additional super instructions can be implemented by
domain programmers.

Although blocking arrays is a well-known technique in parallel programming, it is rarely
supported at the programming language level. Expressing algorithms in terms of blocks is very
natural in the domain and has several significant consequences:

• Data is handled at a granularity that can be e�ciently moved between nodes.

• Computation steps will be time consuming enough for the runtime system to be able to
e↵ectively and automatically overlap communication and computation.

For the purposes of conveniently exploiting GPUs, programming with blocks provides the fol-
lowing additional benefits:

• The computation is already partitioned into tasks that map conveniently onto CUDA
kernels

• Most super instructions lend themselves to straightforward data parallel implementations.

1

3 Overview

In this section, we give an brief overview of the SIA, first describing the language SIAL, then
the runtime system, SIP. A more complete description can be found in [SBD+10].

3.1 SIAL

The most important features of SIAL are intrinsic distributed and disk backed arrays, explicit
parallelism with a pardo statement, and support for expressing algorithms in terms of blocks of
multi-dimensional arrays.

3.1.1 Arrays and indices

SIAL exposes the following qualitative di↵erences in the size of arrays: small enough to fit in the
memory of a single process, distributed, and disk-backed. This is done by o↵ering several array
types: static, local, temp, distributed, and served. Static arrays are small and replicated in
all processes. Distributed arrays are partitioned into blocks and distributed. Served arrays, also
partitioned into blocks, are stored on disk. Local and temp arrays are local to a process and are
used for holding intermediate results. In the SIA extension, blocks of local and temp arrays may
be allocated in GPU memory.

Arrays are declared with segment indices that refer to segments rather than individual ele-
ments. The shape of an array is defined in its declaration by specifying index variables for each
dimension. Index variables themselves are declared with a range, which may be defined using
either a constant value, or a symbolic constant that is determined during program initialization.
As a result, the size of an array and the size of its segments are known and fixed during the
program execution, but need not be known when the program is written. There are three types
of indices: segment indices1 count segments and enable programming in blocks; simple indices,
most commonly used to count iterations; and subindices. A subindex is related to a specific
segment index and allows access to subblocks.

One-sided access to blocks of distributed arrays occurs via get and put commands. Anal-
ogous commands for served arrays are request and prepare. Both put and prepare have
variations that atomically accumulate results into the block on the home node or IO server.

Local and temp arrays are used within a process to hold intermediate results. Local arrays
are explicitly allocated and deallocated and are typically fully formed in at least one dimension.
Temp arrays are automatically allocated and deallocated from CPU memory by the runtime
system. Blocks of local and temp arrays may be allocated and, if necessary, initialized in GPU
memory. This will be explained in more detail in the context of the example in Sect. 4.1.

3.1.2 Expressing Coarse Parallelism

Coarse parallelism, where tasks are mapped onto MPI processes, is explicitly expressed using a
pardo command that is given a list of index variables and an optional list of where clauses,
each with a boolean expression. The SIP executes iterations, in parallel in MPI processes, over
all possible combinations of the values in the range of the given indices that also satisfy the
where clauses. The where clause is most frequently used to eliminate redundant computation
when arrays are symmetric. Scheduling of pardo iterations and mapping onto processors is done
by the SIP.

3.1.3 Other control structures

Other control structures include procedure calls2, if and if -else commands and a do loop.
The latter is given a single index variable and conducts a sequential iteration over the range
of the index variable. Typically, a computation will require looping over blocks of two or four

1There are actually several segment index ”types” corresponding to domain specific concepts. For example,
aoindex and moindex represent atomic orbital and molecular orbital. This allows the type system to perform
useful checks on the consistent use of index variables.

2Procedures in SIAL are somewhat nonstandard and are almost like macros except that the return instruction
allows an early return.

2

dimensional arrays. The combination of the pardo loop with the sequential do loop provides a
convenient and straightforward way for the SIAL programmer to structure computations.

3.2 SIP

SIAL programs are compiled into SIA bytecode, which is interpreted by the SIP. The SIP is a
parallel virtual machine written C, Fortran, and MPI that manages the complexities of dealing
with parallel hardware, including communication and I/O.

The SIP is organized as a master, a set of workers, and a set of I/O servers, each implemented
(in the current release) using a sequential MPI process. When execution of a SIAL program is
initiated, the master performs the management functions required to set up the calculation. The
focus of the SIP design e↵ort was to produce a well-engineered system that can e�ciently execute
SIAL programs and be easily ported to and tuned for di↵erent systems. A design principle of the
SIP is to maximize asynchrony; all message passing is asynchronous and all barriers are explicit.

The SIAL get, put, prepare and request statements may require transferring blocks be-
tween nodes, either another worker node for a distributed array or an IO Server for a served
array. The SIP first determines whether the indicated block is available at the current node. It
may be available because it was assigned to be stored there, or because it is still available in
the block cache from a recent use. If not, non-blocking communication is initiated to acquire or
send the indicated block using information in the block’s data descriptor. As much as possible,
instructions are executed asynchronously: Those involving communication are started and then
control returns to the SIP task so that more computations or di↵erent communications can be
performed. When an instruction that needs a block executes, it will transparently wait if the
communication to acquire the block is still in progress.

3.2.1 Super Instructions

A SIAL programmer has a rich collection of super instructions at his or her disposal. Super
instructions are provided for a variety of operations including I/O and utility functions. Compu-
tational super instructions perform computationally intensive operations on blocks; they simply
take blocks as input and generate new blocks as output and do not involve communication.
Those that will be executed on a CPU are implemented in Fortran or another general purpose
programming language and thus can take advantage of high quality optimizing compilers. CUDA
implementations have been provided for the most important super instructions, enabling them
to be executed on the GPU.

4 Extensions for GPU Utilization

The Super Instruction Architecture provides a straightforward approach to enabling applications
to utilize GPUs by mapping super instructions to kernels. The super instructions, in most cases,
lend themselves to straightforward data parallel implementations. Two approaches were tried to
manage the necessary data transfer.

The first attempt required no change to SIAL programs. The GPU-enabled super instructions
were self-contained computational units that would be executed on a GPU whenever one was
available. Each GPU-enabled super instruction would test for the presence of a GPU and if
available would transfer required data blocks to the GPU, perform the operation, and transfer
the results back to the host. If a GPU was not available, the work would be done on the
CPU. The advantages of this approach are that it requires no changes to SIAL programs and
enabled an incremental approach to providing the necessary CUDA implementations of super
instructions. However, although the super instruction implementations in isolation exhibited
significant speedups on the GPU, the performance improvement of the overall computation was
much less impressive due to the inherent synchrony and frequent unnecessary data transfer.
Also, whether it is worthwhile to perform an operation on the GPU depends on the amount of
data used in the operation. For example, the time to perform a contraction operation involving
only two dimensional arrays (where for a typical (but problem and system dependent) segment
size of around 35 element, the size of the block would be 352), including data transfer time

3

Directive Description
gpu begin Start of a region SIAL code whose super instructions

will be implemented on the GPU if one is available.
gpu end End of the region of SIAL code.
gpu allocate hblocki Allocate memory to hold local or temp block hblocki

on GPU (initialize to 0)
gpu free hblocki Free memory associated with hblocki on GPU
gpu put hblocki Copy data from local or temp block hblocki from the

CPU to the GPU. If necessary, allocate memory on
the GPU.

gpu get hblocki Copy contents of hblocki from GPU to CPU

Figure 1: Directives for GPU use

might be longer on the GPU than on the CPU. A contraction involving four dimensional arrays,
would have blocks big enough to make execution on the GPU worthwhile. The bottom line is
that getting the best results from this approach would require building logic into every super
instruction significantly more complex than checking a flag to see whether a GPU exists.

The current version provides directives with which to annotate SIAL programs which

• Indicate which parts of a SIAL program should be executed on a GPU (if available)

• Explicitly manage memory allocation on the GPU and data transfer between the host and
device.

This requires some work from the programmer, but has yielded much better performance. Di-
rectives are provided to indicate regions of SIAL programs that should be executed on a GPU if
one is available. Directives are also provided to allocate and free blocks in device memory, and
transfer data between the host and device memories. As a result, a sequence of super instructions
can reuse data on the GPU. These instructions are shown in Fig. 1.

Future work will explore compiler analysis to reduce the annotation burden on the program-
mer.

Since a hardware platform may have fewer GPUs than compute cores, SIAL programs with
GPU directives should remain correct when no GPU is available. This must be supported by
the SIP since the same compiled SIAL program must work in either case.

4.1 Example

In this section, we show a fragment of a CCSD calculation that has been annotated for GPU
execution.3 This will serve to illustrate both the SIAL language and directives. Declarations
of index variables and arrays are not shown; TA0 ab and T2A0 ab are 4 dimensional served
(disk-backed arrays). LTAO ab, LT2AO ab1, LT2AO ab2, are local arrays, and Yab and Y1ab
are temp arrays.

The PARDO lambda, sigma statement in line 1 sets up the parallel computation. The
index space, formed by the ranges of segment indices lambda and sigma, is partitioned among
the worker processes and the instances of the body are performed in parallel. Exactly how this is
done is determined by the chosen load balancing mechanism. The next few statements allocate
blocks of local array LTAO ab and fill them with data obtained from served array TAO ab. The
DO command, first seen in line 10, indicates a serial loop over the range of the given index
variable. The first GPU directive, gpu begin appears in line 17. If the node has a GPU, it
will be used in the subsequent super instructions. If not, the GPU related directives will have
no result, and the entire computation will be performed on the CPU. The command gpu put
allocates memory on the GPU and initializes it with data copied from the indicated block on the
host. gpu allocate allocates a temp block on the GPU. Lines 35-38 perform calculations on the

3The syntax has been slightly simplified.

4

GPU. These intrinsic super instructions are implemented as CUDA kernels. The contraction4

in line 35 is one of the more computationally intensive super instructions. Note that it is not
necessarily the case that each block of an array is the same size, so the temp blocks allocated on
the GPU need to be freed and reallocated rather than being reused in the next iteration.

Lines 44-54 copy results stored in blocks of the arrays LT2AO ab1 and LT2AO ab2 back to
the GPU and free GPU memory. The remainder of the code accumulates the computed results
into blocks of the served array T2AO ab, lines 59- 60 and frees CPU memory.

5 Results

In this section, we provide results from experiments on Blue Waters. To eliminate, as much
as possible, extraneous e↵ects that might a↵ect the timings, the GPU and CPU computations
presented were run immediately after one another on exactly the same set of machines.

Figure 3 shows the total time and idle time (when nodes are waiting for data to arrive from
another node) of a relatively small calculation ranging from 4 to 32 processors, each with a
GPU attached. This was a CCSD calculation for Ar4 in cc-pvQZ basis with 236 basis functions
and 36 correlated electronic orbitals. The segment sizes were 42 for arrays representing atomic
and virtual orbitals and 36 for occupied orbitals, thus a block of an N-dimensional array would
contain between 36N and 42N elements. For each processor count, the first bar is the total time
using GPUs, the second bar is the total time without GPUs. Speedups ranged from 2.0-2.2. The
third and fourth bars show the total idle time (i.e. the time spent waiting for data to arrive
from a di↵erent node) in the computation. As would be expected from the structure of the
computation5, these values are nearly the same with and without GPUs.

Figure 4 shows the performance of the time required for three of the most time consuming
procedures in the CCSD calculation. For each processor count, the first two bars show the time
required with and without GPUs respectively for the LADDER procedure which scales as N4O2.
The third and fourth bars show the time for the WAEBF procedure, which scales as V 2O4. The
fifth and sixth bars show the time for the WMEBJ procedure which scales as V 3O3 with a
relatively large prefactor.

CCSD(T) calculations are more accurate than CCSD, but the accuracy comes at a significant
computational price. Figure 5 shows timings results from the (T) contribution for the same
molecule, Ar4, and same basis set as in Figures 3 and 4. However, for this calculation, the
segment sizes were reduced in order for the calculation to fit in the available CPU memory.

The (T) contribution is comprised of two parts, aaa, and aab consisting of 9 and 8 permuta-
tion steps, respectively. Each permutation step involves and initial permutation of the matrices
followed by a contraction, followed by a permutation; the di↵erent steps perform di↵erent per-
mutations, but are other wise the same. Figure 6 shows the CPU time per permutation. The
varying results for the CPU only computations reflect the di↵erent memory access patterns and
interaction with caches on the CPU. When the permutations and contractions are performed on
the GPUs, the timing results are much more uniform.

The Ar4 molecule used in the previous results, being relatively small and admitting well-
behaved calculation, is useful for studying the performance of GPU-enabled ACESIII. However,
it is also desirable to show results for larger scale calculations of genuine scientific interest In
Figure 7, we show timing results for RDX, an organic explosive that requires significantly more
computational power than Ar4. These calculations used 534 basis functions (cc-pvTZ basis) with
84 correlated electrons and segments sizes of 21, 34, and 42 for atomic, virtual, and occupied
orbitals, respectively. Note that the vertical axis is now hours rather than seconds and the
number of processors ranges from 500 to 1000. The speedup achieved by exploiting the GPUs
ranges from 3.4 for 1000 processors to 3.7 for 500.

4Tensor contraction operations occur frequently in the domain and are defined as follows: Let ↵,�, � be
mutually disjoint, possibly empty lists of indices of multidimensional arrays representing the tensors. Then the

contraction of A[↵,�] with B[�, �] yields C[↵, �] =
X

�

A[↵,�] ⇤B[�, �]. Typically, contractions are implemented

by (possibly) permuting one of the arrays and then applying a DGEMM.
5As can be seen from the SIAL code fragment in Figure 2 , data transfer between nodes do not overlap with

GPU instructions.

5

1 PARDO lambda , sigma
2 #a l l o c a t e and i n i t i a l i z e CPU memory , compute i n t e g r a l b l o c k on CPU
3 allocate LTAO ab(lambda ,⇤ , sigma , ⇤)
4 DO i
5 DO j
6 request TAO ab(lambda , i , sigma , j) #ge t b l o c k from IO serve r
7 LTAO ab(lambda , i , sigma , j) = TAO ab(lambda , i , sigma , j)
8 ENDDO j
9 ENDDO i

10 DO mu
11 DO nu
12 WHERE mu < nu
13 allocate LT2AO ab1(mu,⇤ , nu , ⇤)
14 allocate LT2AO ab2(nu ,⇤ ,mu, ⇤)
15 compute integrals ao in t (lambda ,mu, sigma , nu)
16 #s t a r t o f GPU reg ion
17 gpu begin
18 #a l l o c a t e and i n i t i a l i z e b l o c k s on GPU
19 gpu put ao in t (lambda ,mu, sigma , nu) #a l l o c a t e and copy data from CPU
20 DO i 1
21 DO j 1
22 gpu put LT2AO ab1(mu, i1 , nu , j 1)
23 gpu put LT2AO ab2(nu , j1 ,mu, i 1)
24 gpu put LTAO ab(lambda , i1 , sigma , j 1)
25 ENDDO j 1
26 ENDDO i 1
27 gpu begin
28 DO i
29 DO j
30 #perform computations on GPU
31 Yab(mu, i , nu , j) = 0 .0
32 Y1ab(nu , j ,mu, i) = 0 .0
33 gpu allocate Yab(mu, i , nu , j) #a l l o c a t e temp b l o c k s on GPU
34 gpu allocate Y1ab(nu , j ,mu, i)
35 Yab(mu, i , nu , j) = ao in t (lambda ,mu, sigma , nu)⇤LTAO ab(lambda , i , sigma , j) #cont rac t i on
36 Y1ab(nu , j ,mu, i) = Yab(mu, i , nu , j) #permutation
37 LT2AO ab1(mu, i , nu , j) += Yab(mu, i , nu , j) #element�wise sums
38 LT2AO ab2(nu , j ,mu, i) += Y1ab(nu , j ,mu, i) #element�wise sums
39 gpu free Yab(mu, i , nu , j) #fr e e temp b l o c k s on GPU
40 gpu free Y1ab(nu , j ,mu, i)
41 ENDDO j
42 ENDDO i
43 #copy r e s u l t s to CPU , f r e e b l o c k s on GPU
44 DO i 1
45 DO j 1
46 gpu get LT2AO ab1(mu, i1 , nu , j 1)
47 gpu get LT2AO ab2(nu , j1 ,mu, i 1)
48 gpu free LT2AO ab1(mu, i1 , nu , j 1)
49 gpu free LT2AO ab2(nu , j1 ,mu, i 1)
50 gpu free LTAO ab(lambda , i1 , sigma , j 1)
51 ENDDO j 1
52 ENDDO i 1
53 gpu free ao in t (lambda ,mu, sigma , nu)
54 gpu end
55 #end of GPU reg ion
56 DO i
57 DO j
58 #send b l o c k s conta in ing r e s u l t s to IO se r v e r s
59 prepare T2AO ab(mu, i , nu , j) += LT2AO ab1(mu, i , nu , j)
60 prepare T2AO ab(nu , j ,mu, i) += LT2AO ab2(nu , j ,mu, i)
61 ENDDO j
62 ENDDO i
63 deallocate LT2AO ab1(mu,⇤ , nu , ⇤) #fr e e l o c a l b l o c k s on CPU
64 deallocate LT2AO ab2(nu ,⇤ ,mu, ⇤)
65 ENDDO nu
66 ENDDO mu
67 deallocate LTAO ab(lambda ,⇤ , sigma , ⇤)
68 ENDPARDO lambda , sigma

Figure 2: SIAL CCSD fragment

6

2474

1192

729 505

5113

2591

1510
1027

681
266 121 69

661
255 116 63

0

1000

2000

3000

4000

5000

6000

4 8 16 32

seconds

number of CPUs

CCSD Calculation for Ar4 in a cc-pvQZ basis

 with GPUs: total time

CPUs only: total time

with GPUs: idle time

CPUs only: idle time

Figure 3: Total and idle time for the Ar4 CCSD calculation

7
9

3
.3

3
4

4
.4

1
8

9
.7

1
2

2
.2

1
7

3
7

.2

8
2

7
.3

4
3

5
.4

2
9

3
.6

2
2

.7

1
3

.2

7
.6

6
.7

 9
8

.7

5
1

.6

2
9

1
8

5
6

4
.8

2
6

8
.2

1
4

8
.9

9
4

.6

2
1

6
4

.8

1
1

3
2

.8

6
5

8
.4

4
2

9
.6

0

500

1000

1500

2000

2500

4 8 16 32

seconds

Number of CPUs

Time consuming procedures in Ar4 CCSD

calculation

with GPUs: Ladder

CPUs only: Ladder

with GPUs: WAEBF

CPUs only: WAEBF

with GPUs: WMEBJ

CPUs only: WMEBJ

Figure 4: Time Consuming Procedures in the Ar4 CCSD calculation. Ladder scales as N4O2,
WAEBF scales as V 2O4, and WMEBJ scales as V 3O3 with a relatively large prefactor.

7

0

5000

10000

15000

20000

25000

30000

40 80 160

seconds

number of CPUs

(T) Contribution of CCSD(T) calculation for Ar4

total: with GPUs

total: CPUs only

Figure 5: Triples contribution of Ar4 in CCSD(T) calculation

6 Scientific Calculations with ACES III on Blue Waters

ACES III and Blue Waters have already been successfully used for significant scientific calcu-
lations in two areas: understanding how biological enzymes operate, and the design of new
organic explosives. What unites both of these problems is a need for high-accuracy methods.
Our simulations calculate the simultaneous repulsions and attractions of all charged particles in
these molecules to unprecedented accuracy. These systems have been the subject of numerous
previous studies, but all were inconclusive due to the accuracy challenges of these systems.

One problem is the catalytic cycle of cytochrome P 450. As this enzyme governs oxygen
absorption in the body there are few more important processes. The enzyme cytochrome p450
achieves what is commonly called the holy grail of organic chemistry: making unreactive com-
pounds reactive. This enzyme has the ability to take worthless chemicals and make them very
valuable, synthetically. What nature does casually, we still lack the ability to do with all modern
technology. In simulation of the biological process, we are closer to understanding how this
process occurs in cells. Additionally, knowledge of how this process works in cells (including
human cells) allows us to improve medical resistance to toxins as well as exploit microbial vul-
nerability to toxins. All previous theoretical work has been limited to density functional theory
(DFT). Yet the critical steps in this cycle depend upon changes in the oxidation state of the iron
center and the related multiplicity of the intermediates, and DFT cannot provide spin states,
nor any reasonable multiples for tradition metal atoms. To the contrary the acknowledged most
accurate, predictive methods available are those from coupled-cluster theory [[CCSD(T)] and
it’s equation-of-motion extensions (EOM- CC). Previously, it has not been possible to use these
tools for a problem of this complexity. With the development of ACESIII and Blue Waters it is
now possible to make this newsworthy study. [MLBb]

Existing explosives, including RDX, are known empirically, but the specifics of how they
work are not understood. We have succeeded in establishing the chemical play-by-play of the
atoms to know how the explosives move from stable organic molecules through detonation. In
calculating the various repulsions/attractions, we found the most likely energetic pathway. We
now have insights as to how we can adjust the explosive yield as well as the shock-sensitivity to
detonation.[MLBa]

8

114.1 113

65

117.2 116.1

63.6

116.2 116.3

47.4
48.4 48.6 47.3 48.4

27 26.9 27
30.6

21.2 20.2 19.4 22.4 22.3

19.9 21.9 22

7.5 7.9 8.1 7.4 8 8.1 7 7.7 7.6

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

seconds

permutation

Individual permutations in (T) aab contribution
Ar4 on 160 cores

aab: CPUs only

aaa: CPUs only

aab: with GPUs

aaa: with GPUs

Figure 6: Time per permutation in (T) contribution

7 Conclusion and future work

We have described an enhancement to ACES III to allow GPUs to be exploited. The results
provide confidence in the block-oriented approach of the Super Instruction Architecture. The
changes to the SIA were implementation of a set of super instruction as CUDA kernels and and
fairly minor changes to the runtime system. The organization of the SIA allowed the e↵ort to
enable GPUs to proceed incrementally as more CUDA implementations were provided. At this
point, we have GPU-enabled implementations for all of the intrinsic super instructions and those
required by CCSD and CCSD(T) calculations. Additional implementations will be provided as
needed. Most admit straightforward data parallel implementations. Changes to SIAL programs
involved identifying the computationally intensive parts of the code and inserting directives
indicating which super instructions should be executed on the GPU, and when memory for a
block should be allocated on the GPU and when the data belonging to a block should be moved
between the GPU and host, expressed in the abstractions supported by SIAL, the SIA’s DSL.
This is in contrast to other e↵orts to exploit GPUs in computational chemistry that typically
required major one-shot reworking of complete parts of the code. The benefits for the end user
of ACES III will be substantial; for example, using GPUs can reduce the time required for
CCSD(T) calculations on the RDX molecule on 1000 cores from nearly ten hours to three.

Future work will involve enhancing the SIAL compiler to help automate placement of the
directives. The first step will automatically determine appropriate memory allocation and data
movement directives given programmer-inserted gpu begin and gpu end statements. Further
e↵orts will explore using performance models, such as SIPMaP [JLDS13] to provide further
automation.

Acknowledgments Shawn McDowell provided the CUDA implementation of the contraction
operator. In addition to the NEIS-P2 grant that primarily supported the GPU work reported
here, development of the SIA and ACES III has been supported by the US Department of
Defense’s High Performance Computing Modernization Program (HPCMP) under the two pro-

9

4.8 4.3 2.9 17.8 15.3 8.4
0

2

4

6

8

10

12

14

16

18

20

500 750 1000

hours

number of processors

(T) Contribution for RDX

with GPUs

CPUs only

Figure 7: CCSD(T) on RDX

grams, Common High Performance Computing Software Initiative (CHSSI), project CBD-03,
and User Productivity Enhancement and Technology Transfer (PET) and the US Department
of Energy ASCR SciDAC program. We also thank the University of Florida High Performance
Computing Center for use of its facilities.

References

[ACE] Aces III. http://www.qtp.ufl.edu/ACES/.

[JLDS13] Nakul Jindal, Victor Lotrich, Erik Deumens, and Beverly A. Sanders. SIPMaP: A
tool for modeling irregular parallel computations in the super instruction architecture.
In 27th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2013), 2013.

[LFP+08] V. Lotrich, N. Flocke, M. Ponton, A. D. Yau, A. Perera, E. Deumens, and R. J.
Bartlett. Parallel implementation of electronic structure energy, gradient and Hessian
calculations. J. Chem. Phys., 128:194104 (15 pages), 2008.

[MLBa] Robert W Molt, Victor Lotrich, and Rodney J. Bartlett. The mechanism of rdx
decomposition using ccsd(t). in preparation.

[MLBb] Robert W Molt, Victor Lotrich, and Rodney J. Bartlett. Relative energies of cy-
tochrome p450 intermediates using coupled cluster many-body methodologies. in
preparation.

[SBD+10] Beverly A. Sanders, Rod Bartlett, Erik Deumens, Victor Lotrich, and Mark Pon-
ton. A block-oriented language and runtime system for tensor algebra with very
large arrays. In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’10, pages 1–
11, Washington, DC, USA, 2010. IEEE Computer Society.

10

