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Introduction

Economics is a complex system.
Economics research ignores this

I Economists analyze simple stylized models of pieces of the system
I Pencil and paper preferred to computers and code

We are trying to change that
I Create robust and general tools that can use state-of-the art

numerical methods on modern computer architectures
I Climate change policy is the application



Climate Change Policy Analysis

Question: What can and should be the response to rising CO2
concentrations?

I Analytical tools in the literature: IAMs (Integrated Assessment
Models)

I Two components: economic model and climate model
I Interaction is often limited: Economy emits CO2 which affects world

average temperature which affects economic productivity.

I Existing IAMs cannot study dynamic decision-making in an evolving
and uncertain world

I Most are deterministic where economic actors know perfectly future
economic and climate events.

I Limitations are due to economists’ aversion to modern
computational tools



Nordhaus’ DICE: The Prototypical Model

I DICE2007 was the only dynamic economic model used by the US
Interagency Working Group on the Cost of Carbon
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Figure : DSICE Framework



Uncertainty and Risk

All agree that uncertainty needs to be a central part of any IAM analysis
Multiple forms of uncertainty

I Risk: productivity shocks, taste shocks, uncertain technological
advances, weather shocks

I Parameter uncertainty: policymakers do not know parameters that
characterize the economic and/or climate systems

I Model uncertainty: policymakers do not know the proper model or
the stochastic processes



Abrupt, Stochastic, and Irreversible Climate Change

Question: What is the optimal carbon tax when faced with abrupt and
irreversible climate change?

I Common assumption in IAMs: damages depend only on
contemporaneous temperature

I Our criticism: this cannot analyze the permanent and irreversible
damages from tipping points

I We show that
I Abrupt climate change can be modeled stochastically
I The policy response to the threat of tipping points is very different

from the policy response to standard damage representations.



Cai-Judd-Lontzek DSICE Model

DSICE (Dynamic Stochastic Integrated Model of Climate and Economy )

DSICE = DICE2007
+ uncertainty regarding the future climate
+ stochastic economic system
+ parameter uncertainty and learning
+ flexible period length
+ advanced computational methods

DSICE: new features
I Economic system: Yt ≡ f (kt , ζt , t) = ζtAtk
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DSICE with Epstein-Zin Preferences

I Epstein-Zin Preferences: recursive utility function
I ψ: IES: “dynamic consumption flexibility”
I γ: risk aversion

I State: Z = (k ,M,T, ζ, χ, J)

I Bellman equation (V600(Z ) is fixed, and is the terminal condition)
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Numerical Dynamic Programming

I Initialization. Choose the approximation grid, X = {xi : 1 ≤ i ≤ m},
and choose functional form for V̂ (x ; b). Let V̂ (x ; bT ) = VT (x).
Iterate through steps1 and 2 over t = T − 1, ..., 1, 0.

I Step 1. Maximization step: Compute

vi = max
ai∈D(xi ,t)

ut(xi , ai ) + βE{V̂ (x+i ; bt+1)},

for each xi ∈ X , 1 ≤ i ≤ m.
I Step 2. Fitting step: Using the appropriate approximation method,

compute the bt such that V̂ (x ; bt) approximates (xi , vi ) data.



Parallelization in Dynamic Programming

I Parallelization in maximization step: Compute

vi = max
ai∈D(xi ,t)

ut(xi , ai ) + βE{V̂ (x+i ; bt+1)},

for each xi ∈ Xt , 1 ≤ i ≤ mt .

I Master-Worker system: Master processor, Worker processors.
I Master-Submaster-Worker system

I use the Cartesian virtual topology for communicator
I one submaster corresponds to one discrete state value and its group

of workers solve all optimization problems on the continuous state
approximation nodes for the discrete state value

I submasters reduce the data-intensive communication between the
master and the workers



Parallelization of DSICE

I Discretized states (ζ, χ, J): 91× 19× 16 = 27, 664 points
I Six-dimensional continuous states (k ,M,T): 56K approximation

nodes per discrete point
I Total number of optimization problems: 372 billion
I Use Master-Submaster-Worker system for one VFI:

I One submaster task solve Bellman at one discrete point
I Its workers solve optimization problem for each of the 56K nodes in

six continuous dimensions
I Communication loads

I Master receives 58MB totally from submasters
I Each submaster receives 0.45MB from its group of workers
I Master would juggle 12GB under simple MW

Num of Nodes Wall Clock Time Total CPU Time
2,612 8.1 hours 77 years



Parallelization of Uncertainty Quantification in DSICE

I Six uncertain parameter values
I intertemporal elasticity of substitution
I risk aversion
I hazard rate of tipping
I expected damages
I variance of damages
I expected duration of the tipping process

I Solve on Smolyak grid in parameter space
I construct high-degree approximation to response surface on the

parameters: 401 cases
I Used 3618 cores

Num of Nodes Wall Clock Time Total CPU Time
113 15.5 minutes 39 days



SCC for DSICE with Tipping

Table : Initial Time SCC (US$/tC) for DSICE with Tipping

Hazard Mean Expected Relative SCC
Rate Damage Duration Variance ψ = 0.5 ψ = 1.5

Parameter Level γ = 2 γ = 10 γ = 2 γ = 10
0.0045 10% 5 0% 88 109 386 480

40% 91 140 400 586
200 0% 54.4 57.8 227 259

40% 54.9 61.5 232 306
0.0025 10% 5 0% 67 83 274 364

40% 69 103 285 467
200 0% 47.2 49.6 174 195

40% 47.5 51.9 176 224



Dynamics of Solutions for DSICE
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Solution of Deterministic Model

I Uncertain Growth with Long Run Risk
I Tipping: hazard rate parameter = 0.0035; mean damage level =

5%; expected duration = 50 years; relative variance = 20%



Validation of Models

Economists uses econometric methods for relating data and models
Our view: validation is an enormous inverse optimal problem
Our approach: use parallelism on Blue Waters to solve these problems
Current project is first to construct necessary code and implement far
more flexible methods



Parallel Iterations of General Operators in Economics Models

More generally, economic problems can be modeled as solutions to
operator equations on Banach spaces

I V (., t) = FtV (., t + 1) where V (Z , t) represents economic system at
time t at state Z

I Approximate functions V (., t) = FtV (., t + 1) in appropriate Banach
space

I Approximate Ft operator



Example of Scalability
....



Social Decisions are Dynamic Games

Economic policy analysis focuses mainly on what is “optimal”.
Real decisions are made by people acting within a social system with
procedures and rules: a game
Most social systems have multiple possible outcomes
We are implementing methods that determine all possible outcomes.



Example of Parallelization of Dynamic Games

I Dynamic Cournot Game with Capacity, 3 players, n states per player,
3 outer iterations

I Number of optimization problems in each iteration: N

Num of N Num of Wall Clock Total Effective Total
States Nodes Time CPU Time Time
(n3) (billion) (minutes) (days) (days)
27 2.9 312 7.8 31 54

614 4 31 56
1228 2.1 31 60
2456 1.1 31 88

64 16 312 47.3 179 328
614 24 179 333
1228 10.4 167 291
2456 5.3 167 301
4912 2.8 168 389



Conclusions

Economic analysis of policies for facing risky and uncertain futures
require the same scale of computational power as is used for other
complex systems.
Economic problems are different from physics and engineering problems

I Different math
I Unknown functions are relatively smooth, leading to global spectral

methods
I Unknown functions have high dimension

I Different combination of tasks
I Parallelism breaks big problems into smaller, compute-intensive

nonlinear problems
I Economics applications use less communication relative to compute

effort
I Economics applications can use asynchronous parallelization

Economics is the same in that math and computation can help answer
questions.


