
Accelerating CyberShake Calculations on the
XE6/XK7 Platform of Blue Waters

Y. Cui, E. Poyraz and J. Zhou
San Diego Supercomputer Center

University of California, San Diego
La Jolla, USA

yfcui,epoyraz,j4zhou@ucsd.edu

S. Callaghan, P. Maechling and T.H. Jordan
Southern California Earthquake Center

University of Southern California
Los Angeles, USA

scottcal,maechlin,tjordan@usc.edu

L. Shih
Department of Computer Engineering

University of Houston - Clear Lake
Houston, TX USA

shih@uhcl.edu

P. Chen

Department of Geology and Geophysics
University of Wyoming

Wyoming, USA
pchen@uwyo.edu

Abstract— CyberShake is a computational platform

developed by the Southern California Earthquake Center
(SCEC) that explicitly incorporates earthquake rupture time
histories and deterministic wave propagation effects into seismic
hazard calculations through the use of 3D waveform simulations.
Using CyberShake, SCEC has created the first physics-based
probabilistic seismic hazard analysis (PSHA) models of the Los
Angeles region from suites of simulations comprising ~108
seismograms. The current models are, however, limited to low
seismic frequencies (≤ 0.5 Hz). To increase the maximum
simulated frequency to above 1 Hz and produce a California
state-wide model, we have transformed SCEC Anelastic Wave
Propagation code (AWP-ODC) to include strain Green’s tensor
(SGT) calculations to accelerate CyberShake calculations. This
tensor-valued wavefield code has both CPU and GPU
components in place for flexibility on different architectures. We
have demonstrated the performance and scalability of this solver
optimized for the heterogeneous Blue Waters system at NCSA.
The high performance of the wave propagation computation,
coupled with CPU/GPU co-scheduling capabilities of our
workflow-managed systems, make a statewide hazard model a
goal reachable with existing supercomputers.

Keywords—CyberShake; AWP-ODC; Strain Green Tensor; Co-
scheduling; Topology; Scalability; Seismic Hazard Map

I. INTRODUCTION
The CyberShake project is a complex, integrative, high-

risk, high-reward computational research activity coordinated
by the Southern California Earthquake Center, supported by
the USGS and NSF, that requires advancements across both
geoscientific and computing domains [17]. CyberShake utilizes
3D simulations and finite-fault rupture descriptions to compute
deterministic (scenario-based) and probabilistic seismic hazard
in Southern California [12]. Long period effects such as
coupling of directivity and basin response that cannot be
captured with standard approaches are clearly evident in
CyberShake hazard maps. Moreover, CyberShake allows for
rapid recomputation of the hazard map to reflect short-term
probability variations provided by operational earthquake
forecasting. Going beyond traditional hazard analysis, event-

specific phenomena can also be identified and analyzed
through examination of the individual ground motion
waveforms. This process highlights the importance of key
elements in the Earthquake Rupture Forecast (ERF) that are
required by the simulation approach, including magnitude-
rupture area scaling, aleatory and epistemic magnitude
variability and spatio-temporal rupture characterization (Figure
1).

Figure 1: The CyberShake hazard model, showing the layering of
information. (A) Hazard map for the LA region (hot colors are
high hazard). (B) Hazard curves for USC site. (C) Disaggregation
of hazard in terms of magnitude and distance. (D) Rupture with
the highest hazard at the site. (E) Seismograms simulated for this
rupture. Arrows show how users can query the model starting at
high levels (e.g. hazard map) to access information of
progressively lower levels (e.g. seismograms).

SCEC researchers have identified Los Angeles and San
Francisco as the geographical regions that are the top scientific

and computational priorities for further CyberShake hazard
calculations. Once these urban seismic hazard studies have
been completed, we will apply the technique to other, less
populated regions in California.

The essential elements that must come together for an
accurate CyberShake-1Hz hazard calculation include the
following: (1) 3D velocity model for California; (2) UCERF2.0
extended ERF rupture descriptions; (3) computational engine
for higher frequency (>1Hz) wave propagation simulations; (4)
ensemble capabilities at large-scale to post-process the wave
propagation simulations. However, the key computational
engine associated with this procedure is a tensor-valued
wavefield calculation that requires parallel computing of
ground shaking calculations at high frequency. A California
state-wide seismic hazard map at the maximum frequency of 1
Hz requires intensive ground shaking calculations for a few
thousand sites. Thus, to advance and apply earthquake system
science research within the practical limits of currently
available HPC resources, we must aggressively improve the
computational performance of our physics-based ground
motion simulation software.

In this paper, we will introduce our recent development of a
CyberShake platform for use on heterogeneous CPU/GPU
systems, that includes an anelastic wave propagation code for
tensor-valued wavefield calculations, and a co-scheduling
runtime environment for post-processing of seismograms
calculations. Section II of this paper introduces the standard
AWP-ODC software and the numerical methods for reciprocity
calculations. Section III verifies the correctness of Strain
Green’s Tensor (SGT) creation, seismogram synthesis, and
error minimization from numerical differentiation, and applies
these new capabilities to obtain the first hazard curve on Blue
Waters. Section IV summarizes information about Blue Waters
systems. Section V introduces the parallel efficiency and the
scalability achieved on petascale supercomputers. Section VI
introduces the topology-aware performance tuning. Section VII
discusses the co-scheduling enabled on Blue Waters for
effective use of a hybrid system. We conclude the paper with
outlooks of the project short-term goals.

II. STRAIN GREEN TENSOR CALCULATIONS WITH AWP-
ODC

The Anelastic Wave Propagation software AWP-ODC
(hereafter abbreviated AWP, AWPc for the CPU code, and
AWPg for the GPU code) is a fourth order finite difference
modeling code that solves 3D velocity-stress wave equations
with the explicit staggered-grid scheme. This code, capable of
both dynamic rupture and earthquake wave propagation
simulations, is a community code used by SCEC for large-
scale ground motion simulations [5, 15, 20, 21].

We discuss here the implementation of a tensor-valued
wavefield calculation based on AWP that can produce ground
motions from many single-site ruptures efficiently.

A. Algorithmic Backgrounds of SGT Calculations
In seismology, the strain tensor is often used to describe the

deformation of the earth medium caused by seismic-wave-
generated displacement field and is linearly related to the stress
field by the constitutive law [19]. We call the strain field

generated by a unit impulsive force located at 𝒓! and pointing
in the 𝑥! direction the SGT, i.e.,

𝐻!"# 𝒓, 𝑡; 𝒓! = !

!
[𝜕!!𝐺!" 𝒓, 𝑡; 𝒓! + 𝜕!!𝐺!"(𝒓, 𝑡; 𝒓!)] (1)

where 𝒓 is the receiver location and Gin is the ith component of
the displacement response to the nth component of a point
force at rS, and the spatial gradient operator acts on the field
coordinate r [15]. The reciprocity of the Green’s tensor, i.e.,
𝐻!"# 𝒓, 𝑡; 𝒓! = 𝐻!"# 𝒓!, 𝑡; 𝒓 enables us to express the
synthetic displacement seismogram generated by an arbitrary
source and recorded at a fixed receiver location using the SGT
computed for the receiver location, i.e.,

 𝑢! 𝒓, 𝑡; 𝒓! = 𝑯 𝒓!, 𝑡; 𝒓 :𝑴 (2)

where M is the seismic moment tensor. The SGT can be
computed from the stress-field, which is explicitly computed in
our AWP code, by applying the stress-strain constitutive
relation.

The elements of the SGT can be used in earthquake source
parameter inversions to obtain the partial derivatives of the
seismograms with respect to the moment tensor elements. By
directly using the strain Green tensor, we can improve the
computational efficiency in waveform modeling while
eliminating the possible errors from numerical differentiation
[3, 4, 15]. Seismic reciprocity can then be applied to compute
synthetic seismograms from SGTs, from which peak spectral
acceleration values are computed and combined into hazard
curves [12].

B. Implementation of CPU-based SGT creation
We start with implementing SGT in CPU-based AWP

(hereafter abbreviated AWP-SGTc). In this version, absorbing
boundary conditions include both the split-equation Perfectly
Matched Layers and ‘sponge layers’ Cerjan [2]. The SGT
implementation is adapted from co-author Po Chen’s schemes
that were originally used to compute the Green’s tensors for
point impulsive body-forces located at the receiver locations
for full-waveform tomography calculations.

AWP-SGTc decomposes the simulation domain in 3D. For
each subgrid of the simulation domain velocity and stress are
computed by the responsible processor. This code exchanges
ghost cell data twice per subgrid, for velocity and stress with
six neighbors, at each iteration of the computation loop.

Strain tensor inputs are different from standard AWP. The
input parameter igreen specifies how the input file should be
processed. There are eight different input modes that can be
chosen. First is the standard AWP source input. In this mode
stress tensors at the source points are given as input. Four of
the input modes set initial velocities at the source points for X,
Y, or Z directions, or all three directions. The remaining three
modes set initial stress tensors on XZ, YZ, and ZZ faces at the
source points. These input modes allow flexibility for the use
of various inputs in the simulation.

In a separate input file, the solver reads in a list of receivers
for which the strain tensor variables are saved at specified time
step instances. Since the number of receivers is typically
smaller than the number of grid points by a factor of 1,000, the
solver reads in this file serially. Then the master CPU
distributes the receivers to their respective CPUs.

The output of AWP-SGTc is also different from AWPc.
Each CPU core saves the six strain tensor variables for the
receivers which they handle at the specified time step instances
for a specified number of times. Then using collective MPI-IO,
each core writes out its tensor results to one large,
appropriately striped (in Lustre) file.

The memory requirement of AWP-SGTc is larger than
AWPc. In the initialization step, application computes two
SGT constants per grid point that are used. Then, these two 3D
arrays have to reside in the memory throughout the simulation.
Compared to AWPc, this causes approximately a 10% increase
in the memory requirement.

C. Implementation of GPU-based SGT creation
Adapting the solver using GPU is the need to accelerate the

SGT generation, which accounts for approximately 90% of the
CyberShake core-hours. This CUDA/MPI code (hereafter
abbreviated AWP-SGTg), supports 2D decomposition on
CPUs. Then each GPU on XK7 node GPU computes velocity
and stress for its own subgrid of the simulation volume.

A CUDA kernel has been developed in the GPU to
calculate the six tensor variables for the receivers that it
handles, at the specified time step instances. The computation
workload of these variables is distributed among different
CUDA threads for each receiver on GPU, and thus is computed
in parallel. Depending on the number of the receivers a GPU
handles, this new kernel may speed up SGT calculation by a
factor of 30,000 compared to the CPU code on XK7 system.

After the computation, we copy the results back to CPUs.
Ideally we like to aggregate the results over time step instances
on the GPUs, however, in practice there is a limitation because
of the GPU memory constraint. We chose to use GPU memory
for the computationally required data only. The copied SGT
time series are aggregated on the CPU memory, before they are
written out using collective MPI-IO [6].

The input modes, output format, and IO control parameters
are the same as used in the CPU code. This allows inputs and
outputs to be processed independently of the code used. Hence
users have the flexibility in choosing the right code for the
systems they use without worrying about the inputs and
outputs, and future changes and improvements to IO can be
quickly integrated into both codes.

The memory requirement of the AWP-SGTg is larger than
the standard AWPc code. The application needs to keep two
tensor constants and receiver coordinates in the GPU memory.
This limits the maximum subgrid size that can be computed per
GPU. In return we have a larger memory available on the CPU
side per subgrid (XK7 node). That allows efficient aggregation
of output data before flushing, and hence improves IO
efficiency.

D. Implementation of IO for SGT calculation
AWPc supports multiple modes of serial and parallel IO

schemes for calculating SGTs. Depending on the inputs and
simulation settings, users can choose the most appropriate one.

AWP-SGT is capable of reading in a large number of
dynamic sources and petabytes of heterogeneous velocity mesh
inputs [6]. This code handles extended sources in a two-step
approach, allowing reading temporal and spatial partitions
simultaneously, with a capability of handling millions of
kinematic sources converted from a dynamic rupture
simulation. However, copying the source data to GPUs through
PCIe is an additional challenge at runtime for the GPU code.

We support three different modes for reading the sources
and the mesh: serial reading of a single file, concurrent reading
of pre-partitioned files, and concurrent reading through MPI-
IO. Source partitioning involves both spatial and temporal
locality required to fit in the GPU memory. Parameters are
introduced to control how often the partitioned source is copied
from CPUs to GPUs. This feature allows CPUs to read in large
chunks of source data to avoid frequent access to file system,
thanks to the large memory available on XK7 node, while GPU
only copies over the amount it can afford. Our implementation
scales well the terabytes initial dataset.

Figure 2: IO concept of AWP using MPI-IO. Each node
computes and aggregates data to output. This results in logical
chunks. At the time of writing out, these chunks are sent to object
storage targets (OST) in parallel. IO communication costs are
distributed to different portions of the network. OSTs manage
the saved chunks. In the bottom of the figure, the logical view of
the file represents interleaved chunks of data produced by
different nodes.

AWP-SGT uses MPI-IO to write the simulation outputs to
a single file concurrently. This works particularly well as more
memory is available on CPUs to allow effective aggregation of
outputs in CPU memory buffers before being flushed. This
concept is depicted in Figure 2. When the specified number of
aggregation is reached, each node communicates to a subset of
available OSTs. This way a larger fraction of the network can
be used to send output data to the filesystem, thus using
available total bandwidth more efficiently. We also support

network(

Chunked(
simula2on(
output(

Chunked(
data(at(
OSTs(

Logical(
view(of(the(
output(file(
on(file(
system(

OST(1(OST(2(OST(L"

Node(1(Node(2(Node(N"

run-time parameters to select a subset of the data points and
timesteps to save.

On the Lustre parallel file systems, as used on NCSA Blue
Waters, users are required to define “striping” for optimization
purpose, by indicating how files within a specified directory
are distributed across the filesystem. Files are broken into
chunks, known as “objects,” and stored to some number of
“Object Storage Targets” (OSTs). Both the size of these
objects and how many OSTs are used may be specified by the
user. In the ideal situation, if all the CPU writers write the same
amount of data (if the number of receivers are the same for
each CPU), then the stripe size can be set to a size that evenly
divides into the amount of data to be written per CPU. The
stripe count (the maximum number of OSTs to be used) can be
set to the number of writers up to the maximum number of
OSTs supported by the filesystem. Then each node
communicates to only one OST to write to the large, chunked
file. That way the network is used in parallel and a balanced
way. However if the amount of data to be written per CPU is
too small or too large, it may be inefficient to set stripe size in
this way [11].

For the CyberShake post-processing jobs, we use the lfs
setstripe command to set stripe count as 10 and stripe size as 5
MB, to distribute the given file contents across the available
OSTs. We observed 6.5X speedup compared to the default
striping (stripe count 1 and stripe size 1 MB). Note that at the
end of post-processing jobs, we place multiple SGT extractions
with varying file sizes and writers depending on the jobs.
Although not straightforward with striping options, the optimal
parameters provide an overall superior IO rate.

III. VERIFICTION OF SGT IMPLEMENTATION
The AWP-SGT implementations have been extensively

verified by comparing stress and strain outputs of earthquake
sources to those from existing CPU codes. The AWP-SGTc
code verification exercises, led by SCEC researchers K. Olsen,
R. Graves, and others, is beyond the scope of this paper. We
focus here on the GPU code verification compared to the
verified and validated AWP-SGTc. We performed a variety of
tests to ensure that AWP-SGTg produces results comparable in
accuracy to the currently used SCEC CyberShake codes
running on HPC systems.

Figure 3: Comparison of SGTs generated using CPU and GPU
versions of AWP-SGT. The test case site is USC.

A. Verification of SGT Implementation Against Tensors
 We examined tensors generated using both codes. The

results from the GPU code and reference model are nearly
identical, with an average difference of 0.005%, in a 1.2 billion
mesh point volume for 20K timesteps (Figure 3).

B. Verification of SGT Implementation Against Hazard Curve
PSHA results are typically delivered as seismic hazard

maps, or as site-specific seismic hazard curves. Probabilistic
seismic hazard curves relate peak ground motion on the X-axis
to the probability of exceeding that level of ground motion on
the Y-axis, for a site of interest. To verify AWP-SGTg, we
calculated a hazard curve and compared it to one from AWP-
SGTc. Figure 4 illustrates that the two versions produce very
similar results (average difference 0.006%). Calculation of a
hazard curve involves tensor time series data from over half a
million locations in the volume, providing rigorous
verification.

Figure 4: PSHA hazard curve calculated for the University of
Southern California (USC) site. The horizontal axis represents
ground motion at 3 seconds spectral acceleration, in terms of g
(unit compared to the acceleration due to gravity). The vertical
axis gives the probability of exceeding that level of ground
motion. The blue line is the curve calculated using CyberShake
with AWP-SGTg and co-scheduling, showing almost identical
results compared to AWP-SGTc (difference ~0.006%). The
dashed lines are hazard curves calculated using four common
attenuation relationships which provide validation of the
CyberShake methodology.

IV. BLUE WATERS SYSTEM
The Blue Waters system (hereafter abbreviated BW) of

NCSA is a Cray hybrid machine composed of 237 cabinets of
Cray XE6, AMD 6276 "Interlagos" Opteron processors with
nominal clock speed of at least 2.3 GHz, plus 32 cabinets of
Cray XK7 with NVIDIA K20X Tesla® Kepler™ accelerators
[13]. The interconnect is Cray Gemini [18]. Two other systems
are added for comparison purposes: Titan and Keeneland. The
OLCF Titan is a Cray XK7 supercomputer located at the Oak
Ridge Leadership Computing Facility (OLCF), with a
theoretical peak double-precision floating point performance of

more than 20 Petaflops. Titan consists of 18,688 physical
compute nodes, where each compute node is comprised of one
16-core 2.2GHz AMD Opteron™ 6274 (Interlagos) CPU, one
NVIDIA Kepler GPU, and 32 GB of RAM. Two nodes share a
Gemini™ high-speed interconnect router. Nodes within the
compute partition are connected in a 3D torus [13]. The
Keeneland Full Scale (KFS) system consists of a 264-node
cluster based on HP SL250 servers. Each node has 32 GB of
host memory, two Intel Sandy Bridge CPU’s, three NVIDIA
M2090 (Fermi) GPUs, and a Mellanox FDR InfiniBand
interconnect. The total peak double precision performance is
around 615 TFlops [11].

V. SCALABILITY AND PERFORMANCE OF AWP-SGT
The strong scaling benchmarks are presented in Figure 5,

the various test sizes are due to the difference of the available
on XE6 and XK7. The smallest XK7 case (with 206 million
mesh points) and all XE6 tests are run on NCSA BW, whereas
other XK7 tests were on OLCF Titan. While the CPU code
demonstrates good scaling, the degradation in strong scaling is
observed for the XK7 case. This is primary due to the increase
in the ratio of total volume of the required halo region (which
surrounds the simulation volume) to the subgrid volume as the
number of GPUs used increases. Thus computation to
communication ratio decreases, and overlapping of
communication with computation becomes less effective. The
strong scaling performance in XE6 case is better. We also have
experimented with topology aware resource management for
AWP as explained in section VI.

Figure 6 presents AWP’s weak scaling performance on
XSEDE Keeneland Initial Delivery System (KIDS), OLCF
Titan and NCSA BW. We observed perfect (100%) linear
speedup on KIDS up to 90 nodes, and on Titan up to 8192
nodes. On KIDS, AWPg achieved 10% of the peak
performance. In the weak scaling tests each GPU computed a
subgrid of 52 million mesh points.

Figure 5: Strong scaling of AWP-SGTg and AWP-SGTc on
NCSA Blue Waters (XE6/XK7) and OLCF Titan (XK7) with
various problem sizes from 206M to 368B grid points.

Figure 6: Weak scaling of AWP-SGTc and AWP-SGTg on NCSA
Blue Waters (XE6/XK7) and OLCF Titan (XK7). Best
performance was achieved on Keeneland (HPSL250, 3 GPUs per
node used). Sustained 2.3 Petaflop/s was achieved on Titan using
16,640 XK7 nodes.

AWP-SGTg running on XK7 demonstrates a performance
improvement of a factor of 3.7 compared to the AWP-SGTc
running on XE6 [6]. Based on this information plus 5000 sites
required to generate a California state-wide seismic hazard
map with a maximum frequency of 1 Hz, our accelerated code
will save more than 500 million allocation hours over the
optimized AWP-SGTc software.

VI. TOPOLOGY PERFORMANCE TUNING
Overall, both the improved AWP-SGTc and AWP-SGTg

achieved perfect weak scaling computation efficiency with the
total computation workload scaled-up proportionally enough to
feed the increased number of compute nodes used on petascale
systems tested, as shown in Figure 6. As expected, strong
scaling of those benchmarks tested starts to degrade as the
number of computation nodes increases under fixed total
computation workloads performed on NCSA BW, as depicted
in Figure 5. Rather than a topology mismatch issue, the most
likely culprit of strong scaling degradation of AWP-SGTg is
the workload starvation of increased numbers of highly
efficient number-crunching GPUs competing for the fixed total
workload in strong scaling, plus the increase in halo region
communication to computation proportion, as described in
section V. But for AWP-SGTc, there may still be room for
strong scaling improvement by optimizing the parallel resource
mapping between virtual AWP-SGTc mesh topology and the
allocated physical BW subnet topologies to reduce the
communication hops.

With the help of R. Fiedler of Cray as well as G. Bauer and
O. Padron of NCSA, we were able to visualize and inspect the
network subnet fragmentation in the initial batch task
placements on the default BW torus node allocation. As
illustrated in Figure 7a, the 4,096 default physical XE6
compute nodes allocated by the BW batch job management
system include distant communications spanning disjoint
fragmented subnets shown in yellow, hopping through the red

1"

10"

100"

1000"

4" 40" 400" 4000"

Sp
ee
du

p&

Number&of&nodes&

ideal"

AWPg.XK7.206M"

AWPg.XK7.1.7B"

AWPg.XK7.27B"

AWPc.XE6.1.4B"

AWPc.XE6.23B"

AWPc.XE6.368B"

0.1$

1$

10$

100$

1000$

2$ 20$ 200$ 2000$ 20000$

TF
LO

PS
'

Number'of'nodes'

ideal$

AWPg/XK7$

AWPg/HPSL250$

AWPc/XE6$

XK7 (GPU capable) region. Figure 7b shows a more
continuous 4096-node default subnet allocation during a lighter
BW system load in blue vertical slab. Although the allocation
is not as fragmented as the yellow subnet of Figure 7a, the flat
slab allocation is stretching along the slower BW Y axis. The
visualization of these less-optimal default network placement
fragmentation presented us with a promising topology tuning
opportunity to improve strong scaling, by allocating a
continuous and more compact, cuboidal subnet within BW
torus in order to better match AWP-SGTc’s virtual 3D
elongated near-neighbor mesh prism topology. Our topology-
mapping optimization was designed to balance the tradeoffs
among:

(1) Matching the virtual 3D Cartesian mesh topology of the
typical 8x4x1 AWP-SGTc mesh proportion (e.g.,
8960x4480x1120 for 45B mesh points) to an elongated
physical subnet prism shape in the BW torus.

(2) Maximizing faster connected BW XZ plane allocation with
the longest virtual mesh topology edge-aligned to the
fastest communicating BW torus Z direction, producing a
flatter subnet allocation and/or applying virtual mesh sheet
folding to stretch over BW XZ planes. Note that subnet
allocation extending to the edge of torus can also cut
subnet diameter significantly due to wrap-around links.

(3) Obtaining a tighter, more compact and cuboidal shaped
BW subnet allocation for lower network diameter
(distance between the most far-apart pair) to achieve
efficient global barrier synchronization in the AWP-SGTc
code.

(4) Reducing inter-node hops along the slowest BW torus Y
direction, by increasing the partition grain size in BW Y
direction, or by mapping BW Y axis to the shallowest
virtual AWP VZ axis, corresponding to the ground depth in
the CyberShake hazard map.

Ideally, we would optimize the virtual to physical network
topology mapping by carefully reserving a best matching prism
subnet in BW torus. However, BW’s randomly situated down
compute nodes at the time of run as well as non-computing IO
service nodes make it difficult to accommodate every direct
near-neighbor data exchange without inter-node
communication hops. We thus employed Cray’s Topaware tool
to aid node selection and MPI rank (virtual process ID)
ordering to harvest the potential speedup, similar to the
reported improvement of 3% to 370% tested with other
2D/3D/4D Cartesian mesh applications [7, 8].

Given a requested logical subnet dimension, Topaware
script explores the BW torus network topology to locate a
slightly larger subnet prism skipping over randomly scattered
down compute nodes and non-computing IO service nodes. For
a strong scaling test run of 45 billion mesh grid points in a
rectangular near-neighbor virtual topology of 8×4×1
proportion in VX, VY and VZ axes, we tested Topaware’s auto
node selection and MPI rank ordering to further optimize 64-
node, 512-node and 4096-node test cases.

Topaware tool is run by the following command, after
setting some environment variables.

(a)

(b)

Figure 7: Default BW batch task placements on torus topology
node allocation for AWP-SGTc on 4,096 XE6 nodes showing
disjoint subnet fragmentations in yellow for (a) and blue for (b)
scattered along the slowest network links in vertical Y dimension,
hopping through the red XK7 region, where pin holes indicating
possible IO nodes. (Visualization courtesy of NCSA BW staff O.
Padron and G. Bauer).

% pick_nodes.sh NX NY NZ NVx NVy NVz S T M

where NX, NY, and NZ set the dimensions of the physical cuboid
in 3D BW torus in terms of node pairs, NVx, NVy, NVz are the
dimensions of the application’s virtual prism per node pair, S
(1, 2, or 3) sets the VX, VY, VZ axis of the virtual topology that is
shared between each node in a node pair, T is the node type (32
cores for the two Opterons in each XE6 and 16 cores for the
Opteron in each XK7 node), and M is the mode for which kind
of nodes (e.g., down nodes) should be skipped in the search.

The environment variable PN_MAP sets the mapping of the
virtual axes to physical ones in the torus. We set PN_MAP to
312 to map virtual VX, VY, VZ axes to physical BW torus Z, X, Y
axes, respectively. After setting NX, NY, NZ, NVx, NVy, NVz and S
according to the test, we set T=32 to use XE6 nodes for AWP-
SGTc and M=0 to skip down compute nodes and IO service
nodes.

A. 64-node Topaware-assisted AWP-SGTc strong scaling
To match the 3D virtual near-neighbor mesh topology of

8x4x1 proportion for the 64-node case, a block of 4×1×8
Gemini routers, each with a node pair attached, was requested
via Topaware script to obtain sufficient logical prism subnet
skipping over some non-computing IO service or down nodes.
The 64-node case was run with 4 1 8 4 4 4 3 setting, indicating
4×1×8 torus node pairs requested, each node pair with 4×4×4
MPI ranks in AWP-SGTc virtual topology, and the 3rd
dimension is split between each node pair. Hence each 32-core
XE6 node will have 4×4×2 = 32 MPI ranks (Figure 8). The
virtual VX, VY, VZ coordinates are mapped to Z, X, Y directions
of the BW torus. Very slight speedup of 0.37% was achieved
by the Topaware node selection over the already quite compact
and optimal default task placement from 4.006 sec/step
reduced to 3.991 sec/step for the 64-node test case.

Figure 8: Representation of 64-node Topaware-assisted physical
node allocation. The node list provided by Topaware tool has
4×1×8 node pairs. Each node pair maps to 4×4×4 MPI ranks.
Solid red lines show the boundary between node pairs. Each node
in a node pair shares the virtual topology in Z dimension, hence
maintaining 4×4×2 virtual mesh topology. Dashed lines show the
boundary between individual nodes in a node pair. The numbers
on the lines represent how many MPI ranks are maintained in
that direction in that section.

B. 512-node Topaware-assisted AWP-SGTc strong scaling
For the 512-node test run, Topaware helped selecting an

8x4x8 logical prism subnet block of Gemini node-pairs
skipping over IO/down nodes. Topaware tool was run with 8 4
8 4 2 8 3 setting, with 8×4×8 torus node pairs requested,
loading each node pair with 4×2×8 MPI ranks, splitting in 3rd
dimension within each node-pair. We then have 4×2×4 = 32

MPI ranks inside each node equipped with 32 cores. The
speedup performance obtained for the 512-node benchmark is
3.15%, from 0.572sec/step reduced to 0.554 sec/step, showing
a bit more promising than the 64-node case. The strong scaling
efficiency is improved from 87.5% to 90% for 512 nodes.
Among the benchmark cases tested, the more cuboid 8×4×8
subnet performed better than the flatter subnets of 8×2×16,
which also outperforms the flattest 16×1×16 subnet allocation.

C. 4096-node Topaware-assisted AWP-SGTc strong scaling
Similarly for testing the 4096-node case, Topaware script

was launched to select a block of Gemini node-pairs of
16x8x16 logical prism subnet block skipping over
service/down nodes. Topaware tool was run with 16 8 16 4 2 8
3 setting, meaning 16×8×16 torus node pairs requested, with
each node pair with 4×2×8 MPI ranks, splitting in 3rd
dimension within each node-pair. We then have 4×2×4 = 32
MPI ranks inside each node equipped with 32 cores. The
resulting continuous prism subnet allocation on BW torus is
near optimal as shown in yellow in Figure 9, where the 2 cubes
actually wrap around to connect directly as one continuous
cuboidal prism. Topology tuning with Topaware tool achieved
a significant 35.15% speedup, from 0.119 sec/step reduced to
0.077 sec/step, boosting the strong scaling efficiency from
52.6% to 81%.

Figure 9: Topaware-assisted task placement on BW torus
topology node allocation for AWP-SGTc on 4,096 XE6 nodes
showing continuous subnet in yellow slab along the fastest XZ
plane, imagining the left most face wrap-around touching
directly to the right-most face. (Visualization courtesy of NCSA
BW staff O. Padron and G. Bauer).

Table 1 summarizes the speedup of topology tuning up
from 0.37% to 35% and improved strong scaling of fixed work
load of 45 billion mesh points of 8960×4480×1120. Among all
the benchmark tested for topology tuning of 64, 512, and 4096

nodes, the more compact and cuboidal prism subnets are better
choices than the flatter subnet prims, because this particular
chosen problem size dimension cannot be evenly factored to
cover the whole BW XZ planes to take advantages of torus
wrap-around connection.

Table 1: Topology tuning with Topaware tool improved strong
scaling efficiency for fixed 45B mesh point AWP-SGTc
benchmark calculation with 64, 512, and 4096 nodes

#nodes Default Topaware Speedup Efficiency ↑

64 4.006 3.991 0.37% 100%
→ 100%

512 0.572 0.554 3.15% 87.5%
→ 90%

4096 0.119 0.077 35.29% 52.6%
→ 81%

Topology mapping with automated Topaware assistance is
easy to achieve for near optimal processor mapping, but
challenging to fine tune further, due to BW’s irregularly placed
IO nodes. A compute node list file is available for looking up
the corresponding Gemini network coordinates, but there is
hardly a standard formula to translate between Gemini router
network coordinates and compute node IDs. A benchmark test
run can get struck in the job queue waiting without warning, if
a selected node is down at the time. The job execution also
encountered issues of long node-list handling when attempting
to run 8K or more nodes. For AWP topology-aware scaling
beyond 4,096 nodes, it will require further investigation
beyond the help of Topaware.

VII. CPUS/GPUS CO-SCHEDULING
When the SGT calculations are performed on GPUs, the

CPUs on the same nodes are mostly idle except for handling IO
and communications, a potential waste of resources. To
maximize our results using the heterogeneous BW system, we
have developed a runtime environment for co-scheduling
across CPUs and GPUs. A CyberShake workflow consists of
two phases: (1) two parallel AWP-SGT calculations, and (2)
high-throughput reciprocity calculations with each rupture
variation to produce seismograms and intensity measures of
interest. Co-scheduling enables us to perform both phases of a
CyberShake calculation simultaneously on XK7 nodes,
reducing time-to-solution and making efficient use of available
computational resources.

A. Multiple Innocation Co-scheduling
One approach to co-scheduling on XK7 nodes is to script

the launching of multiple simultaneous parallel jobs. To run the
CyberShake workflow, we use the following approach,
outlined in pseudocode:

aprun -n 50 <GPU executable> <arguments> &
get the PID of the GPU job
cybershake_coscheduling.py:
 build all the cybershake input files
 divide up the nodes and work among a customizable number of jobs
 for each job:
 fork extract_sgt.py cores --> performs pre-processing and

launches

"aprun -n <cores per job> -N 15 -r 1 <cpu executable A>&"
 get PID of the CPU job
 while executable A jobs are running:
 check PIDs to see if job has completed
 if completed:launch
 “aprun -n <cores per job> -N 15 -r 1 <cpu executable B>&”
 while executable B jobss are running:
 check for completion
check for GPU job completion

To enable co-scheduling, we launch multiple MPI jobs on
XK7 nodes via multiple calls to aprun, the ALPS utility to
launch jobs on compute nodes from a Node Manager (MOM)
node. We use core specialization, an aprun command line
option, when launching the child aprun calls to keep one core
available for GPU data transfer and communication calls, as
both the GPU and CPU codes use MPI. Testing has shown that
this co-scheduling approach results in minimal impact on either
the GPU or CPU performance. To prevent overloading the
MOM node with too many simultaneous aprun calls, we limit
the number of child aprun calls to no more than 5. We have
successfully validated a CyberShake hazard curve calculated
using this co-scheduling approach (Figure 4).

Since a typical CyberShake science study requires the
calculation of hundreds to thousands of hazard curves, we can
use this co-scheduling approach to pipeline our computations,
running our high-throughput reciprocity calculations for the
previous site while performing SGT calculations for the next
one, improving utilization of available resources while
reducing time-to-solution.

B. AWP API Co-scheduling
Another way to use idle CPUs efficiently for co-scheduling

of CyberShake simulation with post-processing is to use the
AWP Application Programming Interface (API). This API
allows independent modules to be interfaced to AWPg [6].
Figure 10 summarizes how AWP API works. AWPg code runs
as the main thread while other modules run as parallel
pthreads. The main thread initializes the individual modules,
and performs wave propagation calculation. Every time a new
chunk of velocity output data is copied from GPU to CPU (at
specified time step instances), the main thread signals all the
modules that are waiting for that data, and then continues with
wave propagation calculation. Each signaled module works on
the data performs whatever operation it needs to do, and
returns back to waiting for the next specified time step for
velocity data to be available on the CPU side. Notice that while
individual modules work on the copied velocity data, the main
thread continues to compute next time steps until the next
specified time step instance.

The SGT calculation API module is in progress. This
module is signaled when velocity data is copied from GPU to
CPU. Then it calculates the strain tensors on one of the idle
CPUs. These tensor results are aggregated for a specified
number of time steps before writing out using collective MPI-
IO.

The main difference in this tensor module and AWP-SGTg
is that it computes the SGT variables on one of the idle CPUs,
rather than on the GPU. While the tensor calculation on a GPU
is faster because of massive parallelism, the tensor module

allows overlapping of solver computation with the SGT
calculation using an otherwise idle CPU.

The tensor module has memory advantages as well. AWP-
SGTg must keep tensor constants and receiver coordinates in
the GPU memory. However the tensor module keeps that data
in XK7 node’s memory, which is much less restrictive (XK7
node memory is 64 GB, compared to GPU’s 6 GB memory).

Figure 10: Flow chart of AWPg with AWP API. Main thread
starts with initializations and initializes the individual modules.
Then in the computational loop, GPU computes the wave
propagation equations. At specified time steps, velocity data is
copied from GPU to CPU and the modules are signaled. The
main thread continues with the computational loop until the end
of the simulation. SGT module is presented as an example. After
the initializations, module waits for the signal. When the signal is
received, the six SGT variables are calculated and aggregated
until writing out. When the specified aggregation chunk size is
reached, SGT variables are written out using collective MPI-IO.

One disadvantage of the SGT module is that it requires
change in the source input reading code of AWPg to support
various input modes. This code level change has minimal
impact on the performance of other modules, or the main
solver computation. This is because the number of related
source points is much smaller than the total number of grid
points, and fewer time steps are processed.

We plan to do a comprehensive performance comparison
between the SGT module enabled AWPg and AWP-SGTg.

VIII. CONCLUSIONS AND OUTLOOK
We have developed a highly efficient earthquake wave

propagation software to perform CyberShake strain Green
tensor and post-processing calculations. This new software is
designed for effective use of NCSA’s hybrid BW system.
Communication optimizations and scalable IO have produced a
SGT solver that achieves excellent scalability on petascale
systems. Our short-term goals are to increase the limit of
seismic frequencies to above 1 Hz and produce a California-
wide seismic hazard model using the UCERF2 rupture forecast
[9]. The computational size of the statewide model will be
more than 200 times larger than the current Los Angeles

models. Along with CyberShake PSHA calculations, we will
apply this new code for use in full-3D waveform tomography,
in the development of improved ismic velocity models, which
are required inputs to CyberShake. Accelerating full-3D
tomography based on the current success of strain tensor
calculation is our next goal. This software will provide highly
scalable solutions for other problems of interest to SCEC as
well as the wider scientific community to obtain better velocity
models for use in structural studies of the Earth across a range
of geographic scales.

ACKNOWLEDGMENT
We thank Gregory Bauer and Omar Padron of NCSA,

Robert Fiedler of Cray for their major contribution of the
topology related optimization and the resource support. Blue
Waters computing resource was provided by NCSA through
Petascale Research in Earthquake System Science on Blue
Waters PRAC (Petascale Computing Resource Allocation)
under NSF award number OCI-0832698. This work used the
Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation
grant number OCI-1053575. Computations performed on Titan
at the Oak Ridge National Laboratory was supported under
DOE Contract No. DE-AC05-00OR22725. Research funding
was provided through UCSD Graduate Program, Blue Waters
Direct Funding, SCEC’s core program funding, NSF
Geoinformatics award: Community Computational Platforms
for Developing Three-Dimensional Models of Earth Structure
(EAR-1226343), and NSF Software Environment for
Integrated Seismic Modeling (OCI-1148493). This research
was supported by SCEC which is funded by NSF Cooperative
Agreement EAR-0529922 and USGS Cooperative Agreement
07HQAG0008. Y. Cui’s work was supported through
XSEDE’s Extended Collaborative Support Service (ECSS)
program, and L. Shih’s work was supported by XSEDE
Campus Champion Fellow program. SCEC contribution
#1778.

REFERENCES

[1] Callaghan, S., Deelman, E., Gunter, D., Juve, G., Maechling, P., Brooks,
C., Vahi, K., Milner, K., Graves, R., Field, E., Okaya, D. and Jordan, T.
2010. Scaling up workflow-based applications. Journal of Computer
and System Sciences, 76, 6 (Sep. 2010), 428–446.

[2] Cerjan, C., Kosloff, D., Kosloff, R. and Reshef, M. 1985. A
nonreflecting boundary condition for discrete acoustic and elastic wave
equations. Geophysics, 50, 4, 705-708.

[3] Chen, P., Jordan, T. H. and Zhao, L. 2007. Full three‐dimensional
tomography: a comparison between the scattering‐ integral and adjoint‐
wavefield methods. Geophysical Journal International, 170, 1, 175-181.

[4] Chen, P., Zhao, L. and Jordan, T. H. 2007, Full 3D tomography for the
crustal structure of the Los Angeles region. Bulletin of the Seismological
Society of America, 97, 4, 1094-1120.

[5] Cui, Y., Olsen, K. B., Jordan, T. H., Lee, K., Zhou, J., Small, P., Roten,
D., Ely, G., Panda, D. K., Chourasia, A., Levesque, J., Day, S. M. and
Maechling, P. 2010. Scalable earthquake simulation on petascale
supercomputers. Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’10,
New Orleans, November 2010), 1-20.

[6] Cui, Y., Poyraz, E., Olsen, K., Zhou, J., Withers, K., Callaghan, S.,
Larkin, J., Guest, C., Choi, D., Chourasia, A., Shi, Z., Day, S.,

Ini$alize)

Calculate)SGT)

Is)the)
signal)

received
?)

Write)out):)MPI:IO)

Is)it)$me)
to)write)
out?)

Ini$alize)simula$on)

Ini$alize)modules)

Start)
computa$on)

on)GPU)

Specified)
$me)
step?)

Copy)velocity)data)
and)signal)modules)

Finalize)

More)
$me)
steps?)

Main)thread)

GPU)

Modules)on)other)CPUs)on)XK7)

yes)

no)

yes)

yes)

yes)

no)

no)

Maechling, P. and Jordan, T., Physics-based Seismic Hazard Analysis
on Petascale Heterogeneous Supercomputers, SC13, Denver, Nov 17-22,
2013 (submitted).

[7] Fiedler, R.A. and Whalen, S. 2012. Improving Task Placement for
Applications with 2D, 3D, and 4D Virtual Cartesian Topologies on 3D
Torus Networks with Service Nodes. CUG 2013, 1-8. Napa Valley, CA,
May 6-9, 2013.

[8] Fiedler, R.A., 2013. Improving Performance of All-to-All, Random Pai,
and Nearest-Neighbor Communication on Blue Waters. Presentation
Slides for PRAC Workshop, Februrary 27, 2013.

[9] Field, E. H., Dawson, T. E., Felzer, K. R., Frankel, A. D., Gupta, V.,
Jordan, T. H., Parsons, T., Petersen, M. D., Stein, R. S., Weldon II, R. J.
and Wills, C. J. 2009. Uniform california earthquake rupture forecast,
version 2 (UCERF 2). Bulletin of the Seismological Society of America,
vol. 99, no. 4 (Aug. 2009), 2053-2107.

[10] Field, E. H., Jordan, T. H. and Cornell, C. A. 2003. OpenSHA: A
developing community-modeling environment for seismic hazard
analysis. Seismological Research Letters, 74, 4, 406-419.

[11] Georgia Tech 2013. Keeneland User Guide. [Online].
https://www.xsede.org/gatech-keeneland.

[12] Graves, R., Jordan, T. H., Callaghan, S. Deelman, E., Field, E., Juve, G.,
Kesselman, C., Maechling, P. Mehta, G., Milner, K., Okaya, D., Small,
P. and Vahi, K. 2011. CyberShake: A physics-based seismic hazard
model for southern california. Pure and Applied Geophysics, vol. 168,
no. 3 (Mar. 2011), 367-381.

[13] Nvidia GK110 Architecture Whitepaper. Online.
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf.

[14] Oak Ridge Leadership Computing Facility 2013. Titan User Guide.
[Online]. https://www.olcf.ornl.gov/support/system-user-guides/titan-

user-guide/.

[15] Olsen, K. B. 1994. Simulation of three-dimensional wave propagation in
the Salt Lake basin. University of Utah, Doctoral dissertation.

[16] Schmedes, J., Archuleta, R. J. and Lavallée, D. 2010. Correlation of
earthquake source parameters inferred from dynamic rupture
simulations. Journal of Geophysical Research: Solid Earth, 115, B3.

[17] Southern California Earthquake Center. 2013. CyberShake [Online].
http://scec.usc.edu/scecpedia/CyberShake.

[18] University of Illinois NCSA 2013. Blue Waters System Overview.
[Online]. https://bluewaters.ncsa.illinois.edu/user-guide.

[19] Zhao, L., Chen, P. and. Jordan, T. H. 2006. Strain Green’s tensors,
reciprocity, and their applications to seismic source and structure
studies. Bulletin of the Seismological Society of America, 96, 5, 1753-
1763.

[20] Zhou, J., Unat, D., Choi, D., Guest, C. an Cui, Y. 2012. Hands-on
performance tuning of 3D finite difference earthquake simulation on
GPU fermi chipset. In Proceedings of International Conference on
Computational Science (ICCS’12, Omaha, Nebraska, June 4-6, 2012), 9,
976-985.

[21] Zhou, J., Cui, Y., Poyraz, E., Choi, D. and Guest, C. 2013. Multi-GPU
implementation of a 3D finite difference time domain earthquake code
on heterogeneous supercomputers. In Procceding of International
Conference on Computational Science (Barcelona, June 5-7, 2013).

