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Abstract— CyberShake is a computational platform 

developed by the Southern California Earthquake Center 
(SCEC) that explicitly incorporates earthquake rupture time 
histories and deterministic wave propagation effects into seismic 
hazard calculations through the use of 3D waveform simulations. 
Using CyberShake, SCEC has created the first physics-based 
probabilistic seismic hazard analysis (PSHA) models of the Los 
Angeles region from suites of simulations comprising ~108 
seismograms. The current models are, however, limited to low 
seismic frequencies (≤ 0.5 Hz). To increase the maximum 
simulated frequency to above 1 Hz and produce a California 
state-wide model, we have transformed SCEC Anelastic Wave 
Propagation code (AWP-ODC) to include strain Green’s tensor 
(SGT) calculations to accelerate CyberShake calculations. This 
tensor-valued wavefield code has both CPU and GPU 
components in place for flexibility on different architectures. We 
have demonstrated the performance and scalability of this solver 
optimized for the heterogeneous Blue Waters system at NCSA. 
The high performance of the wave propagation computation, 
coupled with CPU/GPU co-scheduling capabilities of our 
workflow-managed systems, make a statewide hazard model a 
goal reachable with existing supercomputers.  

Keywords—CyberShake; AWP-ODC; Strain Green Tensor; Co-
scheduling; Topology; Scalability; Seismic Hazard Map 

I. INTRODUCTION 
The CyberShake project is a complex, integrative, high-

risk, high-reward computational research activity coordinated 
by the Southern California Earthquake Center, supported by 
the USGS and NSF, that requires advancements across both 
geoscientific and computing domains [17]. CyberShake utilizes 
3D simulations and finite-fault rupture descriptions to compute 
deterministic (scenario-based) and probabilistic seismic hazard 
in Southern California [12]. Long period effects such as 
coupling of directivity and basin response that cannot be 
captured with standard approaches are clearly evident in 
CyberShake hazard maps. Moreover, CyberShake allows for 
rapid recomputation of the hazard map to reflect short-term 
probability variations provided by operational earthquake 
forecasting. Going beyond traditional hazard analysis, event-

specific phenomena can also be identified and analyzed 
through examination of the individual ground motion 
waveforms. This process highlights the importance of key 
elements in the Earthquake Rupture Forecast (ERF) that are 
required by the simulation approach, including magnitude-
rupture area scaling, aleatory and epistemic magnitude 
variability and spatio-temporal rupture characterization (Figure 
1). 

 
Figure 1: The CyberShake hazard model, showing the layering of 
information. (A) Hazard map for the LA region (hot colors are 
high hazard). (B) Hazard curves for USC site. (C) Disaggregation 
of hazard in terms of magnitude and distance. (D) Rupture with 
the highest hazard at the site. (E) Seismograms simulated for this 
rupture. Arrows show how users can query the model starting at 
high levels (e.g. hazard map) to access information of 
progressively lower levels (e.g. seismograms). 
 

SCEC researchers have identified Los Angeles and San 
Francisco as the geographical regions that are the top scientific 



and computational priorities for further CyberShake hazard 
calculations. Once these urban seismic hazard studies have 
been completed, we will apply the technique to other, less 
populated regions in California. 

The essential elements that must come together for an 
accurate CyberShake-1Hz hazard calculation include the 
following: (1) 3D velocity model for California; (2) UCERF2.0 
extended ERF rupture descriptions; (3) computational engine 
for higher frequency (>1Hz) wave propagation simulations; (4) 
ensemble capabilities at large-scale to post-process the wave 
propagation simulations. However, the key computational 
engine associated with this procedure is a tensor-valued 
wavefield calculation that requires parallel computing of 
ground shaking calculations at high frequency. A California 
state-wide seismic hazard map at the maximum frequency of 1 
Hz requires intensive ground shaking calculations for a few 
thousand sites. Thus, to advance and apply earthquake system 
science research within the practical limits of currently 
available HPC resources, we must aggressively improve the 
computational performance of our physics-based ground 
motion simulation software. 

In this paper, we will introduce our recent development of a 
CyberShake platform for use on heterogeneous CPU/GPU 
systems, that includes an anelastic wave propagation code for 
tensor-valued wavefield calculations, and a co-scheduling 
runtime environment for post-processing of seismograms 
calculations. Section II of this paper introduces the standard 
AWP-ODC software and the numerical methods for reciprocity 
calculations. Section III verifies the correctness of Strain 
Green’s Tensor (SGT) creation, seismogram synthesis, and 
error minimization from numerical differentiation, and applies 
these new capabilities to obtain the first hazard curve on Blue 
Waters. Section IV summarizes information about Blue Waters 
systems. Section V introduces the parallel efficiency and the 
scalability achieved on petascale supercomputers. Section VI 
introduces the topology-aware performance tuning. Section VII 
discusses the co-scheduling enabled on Blue Waters for 
effective use of a hybrid system. We conclude the paper with 
outlooks of the project short-term goals.  

II. STRAIN GREEN TENSOR CALCULATIONS WITH AWP-
ODC 

The Anelastic Wave Propagation software AWP-ODC 
(hereafter abbreviated AWP, AWPc for the CPU code, and 
AWPg for the GPU code) is a fourth order finite difference 
modeling code that solves 3D velocity-stress wave equations 
with the explicit staggered-grid scheme. This code, capable of 
both dynamic rupture and earthquake wave propagation 
simulations, is a community code used by SCEC for large-
scale ground motion simulations [5, 15, 20, 21]. 

We discuss here the implementation of a tensor-valued 
wavefield calculation based on AWP that can produce ground 
motions from many single-site ruptures efficiently. 

A. Algorithmic Backgrounds of SGT Calculations 
In seismology, the strain tensor is often used to describe the 

deformation of the earth medium caused by seismic-wave-
generated displacement field and is linearly related to the stress 
field by the constitutive law [19]. We call the strain field 

generated by a unit impulsive force located at 𝒓! and pointing 
in the 𝑥! direction the SGT, i.e., 

 
𝐻!"# 𝒓, 𝑡; 𝒓! = !

!
[𝜕!!𝐺!" 𝒓, 𝑡; 𝒓! + 𝜕!!𝐺!"(𝒓, 𝑡; 𝒓!)]    (1) 

 
where 𝒓 is the receiver location and Gin is the ith component of 
the displacement response to the nth component of a point 
force at rS, and the spatial gradient operator acts on the field 
coordinate r [15]. The reciprocity of the Green’s tensor, i.e., 
𝐻!"# 𝒓, 𝑡; 𝒓! = 𝐻!"# 𝒓!, 𝑡; 𝒓 enables us to express the 
synthetic displacement seismogram generated by an arbitrary 
source and recorded at a fixed receiver location using the SGT 
computed for the receiver location, i.e., 

 
  𝑢! 𝒓, 𝑡; 𝒓! = 𝑯 𝒓!, 𝑡; 𝒓 :𝑴              (2) 
 
where M is the seismic moment tensor. The SGT can be 
computed from the stress-field, which is explicitly computed in 
our AWP code, by applying the stress-strain constitutive 
relation. 

The elements of the SGT can be used in earthquake source 
parameter inversions to obtain the partial derivatives of the 
seismograms with respect to the moment tensor elements. By 
directly using the strain Green tensor, we can improve the 
computational efficiency in waveform modeling while 
eliminating the possible errors from numerical differentiation 
[3, 4, 15]. Seismic reciprocity can then be applied to compute 
synthetic seismograms from SGTs, from which peak spectral 
acceleration values are computed and combined into hazard 
curves [12]. 

B. Implementation of CPU-based SGT creation 
We start with implementing SGT in CPU-based AWP 

(hereafter abbreviated AWP-SGTc). In this version, absorbing 
boundary conditions include both the split-equation Perfectly 
Matched Layers and ‘sponge layers’ Cerjan [2]. The SGT 
implementation is adapted from co-author Po Chen’s schemes 
that were originally used to compute the Green’s tensors for 
point impulsive body-forces located at the receiver locations 
for full-waveform tomography calculations. 

AWP-SGTc decomposes the simulation domain in 3D. For 
each subgrid of the simulation domain velocity and stress are 
computed by the responsible processor. This code exchanges 
ghost cell data twice per subgrid, for velocity and stress with 
six neighbors, at each iteration of the computation loop. 

Strain tensor inputs are different from standard AWP. The 
input parameter igreen specifies how the input file should be 
processed. There are eight different input modes that can be 
chosen. First is the standard AWP source input. In this mode 
stress tensors at the source points are given as input. Four of 
the input modes set initial velocities at the source points for X, 
Y, or Z directions, or all three directions. The remaining three 
modes set initial stress tensors on XZ, YZ, and ZZ faces at the 
source points. These input modes allow flexibility for the use 
of various inputs in the simulation. 



In a separate input file, the solver reads in a list of receivers 
for which the strain tensor variables are saved at specified time 
step instances. Since the number of receivers is typically 
smaller than the number of grid points by a factor of 1,000, the 
solver reads in this file serially. Then the master CPU 
distributes the receivers to their respective CPUs. 

The output of AWP-SGTc is also different from AWPc. 
Each CPU core saves the six strain tensor variables for the 
receivers which they handle at the specified time step instances 
for a specified number of times. Then using collective MPI-IO, 
each core writes out its tensor results to one large, 
appropriately striped (in Lustre) file. 

The memory requirement of AWP-SGTc is larger than 
AWPc. In the initialization step, application computes two 
SGT constants per grid point that are used. Then, these two 3D 
arrays have to reside in the memory throughout the simulation. 
Compared to AWPc, this causes approximately a 10% increase 
in the memory requirement. 

C. Implementation of GPU-based SGT creation 
Adapting the solver using GPU is the need to accelerate the 

SGT generation, which accounts for approximately 90% of the 
CyberShake core-hours. This CUDA/MPI code (hereafter 
abbreviated AWP-SGTg), supports 2D decomposition on 
CPUs. Then each GPU on XK7 node GPU computes velocity 
and stress for its own subgrid of the simulation volume. 

A CUDA kernel has been developed in the GPU to 
calculate the six tensor variables for the receivers that it 
handles, at the specified time step instances. The computation 
workload of these variables is distributed among different 
CUDA threads for each receiver on GPU, and thus is computed 
in parallel. Depending on the number of the receivers a GPU 
handles, this new kernel may speed up SGT calculation by a 
factor of 30,000 compared to the CPU code on XK7 system. 

After the computation, we copy the results back to CPUs. 
Ideally we like to aggregate the results over time step instances 
on the GPUs, however, in practice there is a limitation because 
of the GPU memory constraint. We chose to use GPU memory 
for the computationally required data only. The copied SGT 
time series are aggregated on the CPU memory, before they are 
written out using collective MPI-IO [6]. 

The input modes, output format, and IO control parameters 
are the same as used in the CPU code. This allows inputs and 
outputs to be processed independently of the code used. Hence 
users have the flexibility in choosing the right code for the 
systems they use without worrying about the inputs and 
outputs, and future changes and improvements to IO can be 
quickly integrated into both codes. 

The memory requirement of the AWP-SGTg is larger than 
the standard AWPc code. The application needs to keep two 
tensor constants and receiver coordinates in the GPU memory. 
This limits the maximum subgrid size that can be computed per 
GPU. In return we have a larger memory available on the CPU 
side per subgrid (XK7 node). That allows efficient aggregation 
of output data before flushing, and hence improves IO 
efficiency. 

D. Implementation of IO for SGT calculation 
AWPc supports multiple modes of serial and parallel IO 

schemes for calculating SGTs. Depending on the inputs and 
simulation settings, users can choose the most appropriate one. 

AWP-SGT is capable of reading in a large number of 
dynamic sources and petabytes of heterogeneous velocity mesh 
inputs [6]. This code handles extended sources in a two-step 
approach, allowing reading temporal and spatial partitions 
simultaneously, with a capability of handling millions of 
kinematic sources converted from a dynamic rupture 
simulation. However, copying the source data to GPUs through 
PCIe is an additional challenge at runtime for the GPU code. 

We support three different modes for reading the sources 
and the mesh: serial reading of a single file, concurrent reading 
of pre-partitioned files, and concurrent reading through MPI-
IO. Source partitioning involves both spatial and temporal 
locality required to fit in the GPU memory. Parameters are 
introduced to control how often the partitioned source is copied 
from CPUs to GPUs. This feature allows CPUs to read in large 
chunks of source data to avoid frequent access to file system, 
thanks to the large memory available on XK7 node, while GPU 
only copies over the amount it can afford. Our implementation 
scales well the terabytes initial dataset. 

 
Figure 2: IO concept of AWP using MPI-IO. Each node 
computes and aggregates data to output. This results in logical 
chunks. At the time of writing out, these chunks are sent to object 
storage targets (OST) in parallel. IO communication costs are 
distributed to different portions of the network. OSTs manage 
the saved chunks. In the bottom of the figure, the logical view of 
the file represents interleaved chunks of data produced by 
different nodes. 

AWP-SGT uses MPI-IO to write the simulation outputs to 
a single file concurrently. This works particularly well as more 
memory is available on CPUs to allow effective aggregation of 
outputs in CPU memory buffers before being flushed. This 
concept is depicted in Figure 2. When the specified number of 
aggregation is reached, each node communicates to a subset of 
available OSTs. This way a larger fraction of the network can 
be used to send output data to the filesystem, thus using 
available total bandwidth more efficiently. We also support 
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run-time parameters to select a subset of the data points and 
timesteps to save. 

On the Lustre parallel file systems, as used on NCSA Blue 
Waters, users are required to define “striping” for optimization 
purpose, by indicating how files within a specified directory 
are distributed across the filesystem. Files are broken into 
chunks, known as “objects,” and stored to some number of 
“Object Storage Targets” (OSTs). Both the size of these 
objects and how many OSTs are used may be specified by the 
user. In the ideal situation, if all the CPU writers write the same 
amount of data (if the number of receivers are the same for 
each CPU), then the stripe size can be set to a size that evenly 
divides into the amount of data to be written per CPU. The 
stripe count (the maximum number of OSTs to be used) can be 
set to the number of writers up to the maximum number of 
OSTs supported by the filesystem. Then each node 
communicates to only one OST to write to the large, chunked 
file. That way the network is used in parallel and a balanced 
way. However if the amount of data to be written per CPU is 
too small or too large, it may be inefficient to set stripe size in 
this way [11]. 

For the CyberShake post-processing jobs, we use the lfs 
setstripe command to set stripe count as 10 and stripe size as 5 
MB, to distribute the given file contents across the available 
OSTs. We observed 6.5X speedup compared to the default 
striping (stripe count 1 and stripe size 1 MB). Note that at the 
end of post-processing jobs, we place multiple SGT extractions 
with varying file sizes and writers depending on the jobs. 
Although not straightforward with striping options, the optimal 
parameters provide an overall superior IO rate. 

III. VERIFICTION OF SGT IMPLEMENTATION 
The AWP-SGT implementations have been extensively 

verified by comparing stress and strain outputs of earthquake 
sources to those from existing CPU codes. The AWP-SGTc 
code verification exercises, led by SCEC researchers K. Olsen, 
R. Graves, and others, is beyond the scope of this paper. We 
focus here on the GPU code verification compared to the 
verified and validated AWP-SGTc. We performed a variety of 
tests to ensure that AWP-SGTg produces results comparable in 
accuracy to the currently used SCEC CyberShake codes 
running on HPC systems. 

 
Figure 3: Comparison of SGTs generated using CPU and GPU 
versions of AWP-SGT. The test case site is USC. 

A. Verification of SGT Implementation Against Tensors 
 We examined tensors generated using both codes. The 

results from the GPU code and reference model are nearly 
identical, with an average difference of 0.005%, in a 1.2 billion 
mesh point volume for 20K timesteps (Figure 3). 

B. Verification of SGT Implementation Against Hazard Curve 
PSHA results are typically delivered as seismic hazard 

maps, or as site-specific seismic hazard curves. Probabilistic 
seismic hazard curves relate peak ground motion on the X-axis 
to the probability of exceeding that level of ground motion on 
the Y-axis, for a site of interest. To verify AWP-SGTg, we 
calculated a hazard curve and compared it to one from AWP-
SGTc. Figure 4 illustrates that the two versions produce very 
similar results (average difference 0.006%). Calculation of a 
hazard curve involves tensor time series data from over half a 
million locations in the volume, providing rigorous 
verification. 

 
Figure 4: PSHA hazard curve calculated for the University of 
Southern California (USC) site. The horizontal axis represents 
ground motion at 3 seconds spectral acceleration, in terms of g 
(unit compared to the acceleration due to gravity). The vertical 
axis gives the probability of exceeding that level of ground 
motion. The blue line is the curve calculated using CyberShake 
with AWP-SGTg and co-scheduling, showing almost identical 
results compared to AWP-SGTc (difference ~0.006%). The 
dashed lines are hazard curves calculated using four common 
attenuation relationships which provide validation of the 
CyberShake methodology. 

IV. BLUE WATERS SYSTEM 
The Blue Waters system (hereafter abbreviated BW) of 

NCSA is a Cray hybrid machine composed of 237 cabinets of 
Cray XE6, AMD 6276 "Interlagos" Opteron processors with 
nominal clock speed of at least 2.3 GHz, plus 32 cabinets of 
Cray XK7 with NVIDIA K20X Tesla® Kepler™ accelerators 
[13]. The interconnect is Cray Gemini [18]. Two other systems 
are added for comparison purposes: Titan and Keeneland. The 
OLCF Titan is a Cray XK7 supercomputer located at the Oak 
Ridge Leadership Computing Facility (OLCF), with a 
theoretical peak double-precision floating point performance of 



more than 20 Petaflops. Titan consists of 18,688 physical 
compute nodes, where each compute node is comprised of one 
16-core 2.2GHz AMD Opteron™ 6274 (Interlagos) CPU, one 
NVIDIA Kepler GPU, and 32 GB of RAM. Two nodes share a 
Gemini™ high-speed interconnect router. Nodes within the 
compute partition are connected in a 3D torus [13]. The 
Keeneland Full Scale (KFS) system consists of a 264-node 
cluster based on HP SL250 servers. Each node has 32 GB of 
host memory, two Intel Sandy Bridge CPU’s, three NVIDIA 
M2090 (Fermi) GPUs, and a Mellanox FDR InfiniBand 
interconnect. The total peak double precision performance is 
around 615 TFlops [11]. 

V. SCALABILITY AND PERFORMANCE OF AWP-SGT  
The strong scaling benchmarks are presented in Figure 5, 

the various test sizes are due to the difference of the available 
on XE6 and XK7. The smallest XK7 case (with 206 million 
mesh points) and all XE6 tests are run on NCSA BW, whereas 
other XK7 tests were on OLCF Titan. While the CPU code 
demonstrates good scaling, the degradation in strong scaling is 
observed for the XK7 case. This is primary due to the increase 
in the ratio of total volume of the required halo region (which 
surrounds the simulation volume) to the subgrid volume as the 
number of GPUs used increases. Thus computation to 
communication ratio decreases, and overlapping of 
communication with computation becomes less effective. The 
strong scaling performance in XE6 case is better. We also have 
experimented with topology aware resource management for 
AWP as explained in section VI. 

Figure 6 presents AWP’s weak scaling performance on 
XSEDE Keeneland Initial Delivery System (KIDS), OLCF 
Titan and NCSA BW. We observed perfect (100%) linear 
speedup on KIDS up to 90 nodes, and on Titan up to 8192 
nodes. On KIDS, AWPg achieved 10% of the peak 
performance. In the weak scaling tests each GPU computed a 
subgrid of 52 million mesh points. 

 
Figure 5: Strong scaling of AWP-SGTg and AWP-SGTc on 
NCSA Blue Waters (XE6/XK7) and OLCF Titan (XK7) with 
various problem sizes from 206M to 368B grid points. 

 
Figure 6: Weak scaling of AWP-SGTc and AWP-SGTg on NCSA 
Blue Waters (XE6/XK7) and OLCF Titan (XK7). Best 
performance was achieved on Keeneland (HPSL250, 3 GPUs per 
node used). Sustained 2.3 Petaflop/s was achieved on Titan using 
16,640 XK7 nodes.  

AWP-SGTg running on XK7 demonstrates a performance 
improvement of a factor of 3.7 compared to the AWP-SGTc 
running on XE6 [6]. Based on this information plus 5000 sites 
required to generate a California state-wide seismic hazard 
map with a maximum frequency of 1 Hz, our accelerated code 
will save more than 500 million allocation hours over the 
optimized AWP-SGTc software. 

VI. TOPOLOGY PERFORMANCE TUNING 
Overall, both the improved AWP-SGTc and AWP-SGTg 

achieved perfect weak scaling computation efficiency with the 
total computation workload scaled-up proportionally enough to 
feed the increased number of compute nodes used on petascale 
systems tested, as shown in Figure 6. As expected, strong 
scaling of those benchmarks tested starts to degrade as the 
number of computation nodes increases under fixed total 
computation workloads performed on NCSA BW, as depicted 
in Figure 5. Rather than a topology mismatch issue, the most 
likely culprit of strong scaling degradation of AWP-SGTg is 
the workload starvation of increased numbers of highly 
efficient number-crunching GPUs competing for the fixed total 
workload in strong scaling, plus the increase in halo region 
communication to computation proportion, as described in 
section V. But for AWP-SGTc, there may still be room for 
strong scaling improvement by optimizing the parallel resource 
mapping between virtual AWP-SGTc mesh topology and the 
allocated physical BW subnet topologies to reduce the 
communication hops. 

With the help of R. Fiedler of Cray as well as G. Bauer and 
O. Padron of NCSA, we were able to visualize and inspect the 
network subnet fragmentation in the initial batch task 
placements on the default BW torus node allocation. As 
illustrated in Figure 7a, the 4,096 default physical XE6 
compute nodes allocated by the BW batch job management 
system include distant communications spanning disjoint 
fragmented subnets shown in yellow, hopping through the red 
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XK7 (GPU capable) region. Figure 7b shows a more 
continuous 4096-node default subnet allocation during a lighter 
BW system load in blue vertical slab. Although the allocation 
is not as fragmented as the yellow subnet of Figure 7a, the flat 
slab allocation is stretching along the slower BW Y axis. The 
visualization of these less-optimal default network placement 
fragmentation presented us with a promising topology tuning 
opportunity to improve strong scaling, by allocating a 
continuous and more compact, cuboidal subnet within BW 
torus in order to better match AWP-SGTc’s virtual 3D 
elongated near-neighbor mesh prism topology. Our topology-
mapping optimization was designed to balance the tradeoffs 
among: 

(1) Matching the virtual 3D Cartesian mesh topology of the 
typical 8x4x1 AWP-SGTc mesh proportion (e.g., 
8960x4480x1120 for 45B mesh points) to an elongated 
physical subnet prism shape in the BW torus. 

(2) Maximizing faster connected BW XZ plane allocation with 
the longest virtual mesh topology edge-aligned to the 
fastest communicating BW torus Z direction, producing a 
flatter subnet allocation and/or applying virtual mesh sheet 
folding to stretch over BW XZ planes. Note that subnet 
allocation extending to the edge of torus can also cut 
subnet diameter significantly due to wrap-around links. 

(3) Obtaining a tighter, more compact and cuboidal shaped 
BW subnet allocation for lower network diameter 
(distance between the most far-apart pair) to achieve 
efficient global barrier synchronization in the AWP-SGTc 
code. 

(4) Reducing inter-node hops along the slowest BW torus Y 
direction, by increasing the partition grain size in BW Y 
direction, or by mapping BW Y axis to the shallowest 
virtual AWP VZ axis, corresponding to the ground depth in 
the CyberShake hazard map. 

Ideally, we would optimize the virtual to physical network 
topology mapping by carefully reserving a best matching prism 
subnet in BW torus. However, BW’s randomly situated down 
compute nodes at the time of run as well as non-computing IO 
service nodes make it difficult to accommodate every direct 
near-neighbor data exchange without inter-node 
communication hops. We thus employed Cray’s Topaware tool 
to aid node selection and MPI rank (virtual process ID) 
ordering to harvest the potential speedup, similar to the 
reported improvement of 3% to 370% tested with other 
2D/3D/4D Cartesian mesh applications [7, 8]. 

Given a requested logical subnet dimension, Topaware 
script explores the BW torus network topology to locate a 
slightly larger subnet prism skipping over randomly scattered 
down compute nodes and non-computing IO service nodes. For 
a strong scaling test run of 45 billion mesh grid points in a 
rectangular near-neighbor virtual topology of 8×4×1 
proportion in VX, VY and VZ axes, we tested Topaware’s auto 
node selection and MPI rank ordering to further optimize 64-
node, 512-node and 4096-node test cases. 

Topaware tool is run by the following command, after 
setting some environment variables. 

 

 
(a) 

 

 
(b) 

Figure 7: Default BW batch task placements on torus topology 
node allocation for AWP-SGTc on 4,096 XE6 nodes showing 
disjoint subnet fragmentations in yellow for (a) and blue for (b) 
scattered along the slowest network links in vertical Y dimension, 
hopping through the red XK7 region, where pin holes indicating 
possible IO nodes. (Visualization courtesy of NCSA BW staff O. 
Padron and G. Bauer).   



% pick_nodes.sh NX NY NZ NVx NVy NVz S T M 

where NX, NY, and NZ set the dimensions of the physical cuboid 
in 3D BW torus in terms of node pairs, NVx, NVy, NVz are the 
dimensions of the application’s virtual prism per node pair, S 
(1, 2, or 3) sets the VX, VY, VZ axis of the virtual topology that is 
shared between each node in a node pair, T is the node type (32 
cores for the two Opterons in each XE6 and 16 cores for the 
Opteron in each XK7 node), and M is the mode for which kind 
of nodes (e.g., down nodes) should be skipped in the search. 

The environment variable PN_MAP sets the mapping of the 
virtual axes to physical ones in the torus. We set PN_MAP to 
312 to map virtual VX, VY, VZ axes to physical BW torus Z, X, Y 
axes, respectively. After setting NX, NY, NZ, NVx, NVy, NVz and S 
according to the test, we set T=32 to use XE6 nodes for AWP-
SGTc and M=0 to skip down compute nodes and IO service 
nodes. 

A. 64-node Topaware-assisted AWP-SGTc strong scaling 
To match the 3D virtual near-neighbor mesh topology of 

8x4x1 proportion for the 64-node case, a block of 4×1×8 
Gemini routers, each with a node pair attached, was requested 
via Topaware script to obtain sufficient logical prism subnet 
skipping over some non-computing IO service or down nodes. 
The 64-node case was run with 4 1 8 4 4 4 3 setting, indicating 
4×1×8 torus node pairs requested, each node pair with 4×4×4 
MPI ranks in AWP-SGTc virtual topology, and the 3rd 
dimension is split between each node pair. Hence each 32-core 
XE6 node will have 4×4×2 = 32 MPI ranks (Figure 8). The 
virtual VX, VY, VZ coordinates are mapped to Z, X, Y directions 
of the BW torus. Very slight speedup of 0.37% was achieved 
by the Topaware node selection over the already quite compact 
and optimal default task placement from 4.006 sec/step 
reduced to 3.991 sec/step for the 64-node test case. 

 
Figure 8: Representation of 64-node Topaware-assisted physical 
node allocation. The node list provided by Topaware tool has 
4×1×8 node pairs. Each node pair maps to 4×4×4 MPI ranks. 
Solid red lines show the boundary between node pairs. Each node 
in a node pair shares the virtual topology in Z dimension, hence 
maintaining 4×4×2 virtual mesh topology. Dashed lines show the 
boundary between individual nodes in a node pair. The numbers 
on the lines represent how many MPI ranks are maintained in 
that direction in that section. 

B. 512-node Topaware-assisted AWP-SGTc strong scaling  
For the 512-node test run, Topaware helped selecting an 

8x4x8 logical prism subnet block of Gemini node-pairs 
skipping over IO/down nodes. Topaware tool was run with 8 4 
8 4 2 8 3 setting, with 8×4×8 torus node pairs requested, 
loading each node pair with 4×2×8 MPI ranks, splitting in 3rd 
dimension within each node-pair. We then have 4×2×4 = 32 

MPI ranks inside each node equipped with 32 cores. The 
speedup performance obtained for the 512-node benchmark is 
3.15%, from 0.572sec/step reduced to 0.554 sec/step, showing 
a bit more promising than the 64-node case.  The strong scaling 
efficiency is improved from 87.5% to 90% for 512 nodes. 
Among the benchmark cases tested, the more cuboid 8×4×8 
subnet performed better than the flatter subnets of 8×2×16, 
which also outperforms the flattest 16×1×16 subnet allocation.  

C. 4096-node Topaware-assisted AWP-SGTc strong scaling  
Similarly for testing the 4096-node case, Topaware script 

was launched to select a block of Gemini node-pairs of 
16x8x16 logical prism subnet block skipping over 
service/down nodes. Topaware tool was run with 16 8 16 4 2 8 
3 setting, meaning 16×8×16 torus node pairs requested, with 
each node pair with 4×2×8 MPI ranks, splitting in 3rd 
dimension within each node-pair. We then have 4×2×4 = 32 
MPI ranks inside each node equipped with 32 cores. The 
resulting continuous prism subnet allocation on BW torus is 
near optimal as shown in yellow in Figure 9, where the 2 cubes 
actually wrap around to connect directly as one continuous 
cuboidal prism. Topology tuning with Topaware tool achieved 
a significant 35.15% speedup, from 0.119 sec/step reduced to 
0.077 sec/step, boosting the strong scaling efficiency from 
52.6% to 81%. 

 
Figure 9: Topaware-assisted task placement on BW torus 
topology node allocation for AWP-SGTc on 4,096 XE6 nodes 
showing continuous subnet in yellow slab along the fastest XZ 
plane, imagining the left most face wrap-around touching 
directly to the right-most face. (Visualization courtesy of NCSA 
BW staff O. Padron and G. Bauer).   

Table 1 summarizes the speedup of topology tuning up 
from 0.37% to 35% and improved strong scaling of fixed work 
load of 45 billion mesh points of 8960×4480×1120. Among all 
the benchmark tested for topology tuning of 64, 512, and 4096 



nodes, the more compact and cuboidal prism subnets are better 
choices than the flatter subnet prims, because this particular 
chosen problem size dimension cannot be evenly factored to 
cover the whole BW XZ planes to take advantages of torus 
wrap-around connection.  

Table 1: Topology tuning with Topaware tool improved strong 
scaling efficiency for fixed 45B mesh point AWP-SGTc 
benchmark calculation with 64, 512, and 4096 nodes 

#nodes Default Topaware Speedup Efficiency ↑ 

64 4.006 3.991 0.37% 100%  
→ 100% 

512 0.572 0.554 3.15% 87.5%  
→ 90% 

4096 0.119 0.077 35.29% 52.6%  
→ 81% 

 

Topology mapping with automated Topaware assistance is 
easy to achieve for near optimal processor mapping, but 
challenging to fine tune further, due to BW’s irregularly placed 
IO nodes. A compute node list file is available for looking up 
the corresponding Gemini network coordinates, but there is 
hardly a standard formula to translate between Gemini router 
network coordinates and compute node IDs. A benchmark test 
run can get struck in the job queue waiting without warning, if 
a selected node is down at the time.  The job execution also 
encountered issues of long node-list handling when attempting 
to run 8K or more nodes. For AWP topology-aware scaling 
beyond 4,096 nodes, it will require further investigation 
beyond the help of Topaware. 

VII. CPUS/GPUS CO-SCHEDULING 
When the SGT calculations are performed on GPUs, the 

CPUs on the same nodes are mostly idle except for handling IO 
and communications, a potential waste of resources. To 
maximize our results using the heterogeneous BW system, we 
have developed a runtime environment for co-scheduling 
across CPUs and GPUs. A CyberShake workflow consists of 
two phases: (1) two parallel AWP-SGT calculations, and (2) 
high-throughput reciprocity calculations with each rupture 
variation to produce seismograms and intensity measures of 
interest. Co-scheduling enables us to perform both phases of a 
CyberShake calculation simultaneously on XK7 nodes, 
reducing time-to-solution and making efficient use of available 
computational resources. 

A. Multiple Innocation Co-scheduling 
One approach to co-scheduling on XK7 nodes is to script 

the launching of multiple simultaneous parallel jobs. To run the 
CyberShake workflow, we use the following  approach, 
outlined in pseudocode: 

aprun -n 50  <GPU executable> <arguments> & 
get the PID of the GPU job 
cybershake_coscheduling.py: 
       build all the cybershake input files 
      divide up the nodes and work among a customizable number of jobs 
       for each job: 
               fork extract_sgt.py cores --> performs pre-processing and 

launches  

"aprun -n <cores per job> -N 15 -r 1 <cpu executable A>&" 
               get PID of the CPU job 
       while executable A jobs are running: 
               check PIDs to see if job has completed 
               if completed:launch  
                   “aprun -n <cores per job> -N 15 -r 1 <cpu executable B>&” 
        while executable B jobss are running: 
               check for completion 
check for GPU job completion 
 

To enable co-scheduling, we launch multiple MPI jobs on 
XK7 nodes via multiple calls to aprun, the ALPS utility to 
launch jobs on compute nodes from a Node Manager (MOM) 
node. We use core specialization, an aprun command line 
option, when launching the child aprun calls to keep one core 
available for GPU data transfer and communication calls, as 
both the GPU and CPU codes use MPI. Testing has shown that 
this co-scheduling approach results in minimal impact on either 
the GPU or CPU performance. To prevent overloading the 
MOM node with too many simultaneous aprun calls, we limit 
the number of child aprun calls to no more than 5. We have 
successfully validated a CyberShake hazard curve calculated 
using this co-scheduling approach (Figure 4). 

Since a typical CyberShake science study requires the 
calculation of hundreds to thousands of hazard curves, we can 
use this co-scheduling approach to pipeline our computations, 
running our high-throughput reciprocity calculations for the 
previous site while performing SGT calculations for the next 
one, improving utilization of available resources while 
reducing time-to-solution. 

B. AWP API Co-scheduling 
Another way to use idle CPUs efficiently for co-scheduling 

of CyberShake simulation with post-processing is to use the 
AWP Application Programming Interface (API). This API 
allows independent modules to be interfaced to AWPg [6]. 
Figure 10 summarizes how AWP API works. AWPg code runs 
as the main thread while other modules run as parallel 
pthreads. The main thread initializes the individual modules, 
and performs wave propagation calculation. Every time a new 
chunk of velocity output data is copied from GPU to CPU (at 
specified time step instances), the main thread signals all the 
modules that are waiting for that data, and then continues with 
wave propagation calculation. Each signaled module works on 
the data performs whatever operation it needs to do, and 
returns back to waiting for the next specified time step for 
velocity data to be available on the CPU side. Notice that while 
individual modules work on the copied velocity data, the main 
thread continues to compute next time steps until the next 
specified time step instance. 

The SGT calculation API module is in progress. This 
module is signaled when velocity data is copied from GPU to 
CPU. Then it calculates the strain tensors on one of the idle 
CPUs. These tensor results are aggregated for a specified 
number of time steps before writing out using collective MPI-
IO.  

The main difference in this tensor module and AWP-SGTg 
is that it computes the SGT variables on one of the idle CPUs, 
rather than on the GPU. While the tensor calculation on a GPU 
is faster because of massive parallelism, the tensor module 



allows overlapping of solver computation with the SGT 
calculation using an otherwise idle CPU. 

The tensor module has memory advantages as well. AWP-
SGTg must keep tensor constants and receiver coordinates in 
the GPU memory. However the tensor module keeps that data 
in XK7 node’s memory, which is much less restrictive (XK7 
node memory is 64 GB, compared to GPU’s 6 GB memory). 

 
Figure 10: Flow chart of AWPg with AWP API. Main thread 
starts with initializations and initializes the individual modules. 
Then in the computational loop, GPU computes the wave 
propagation equations. At specified time steps, velocity data is 
copied from GPU to CPU and the modules are signaled. The 
main thread continues with the computational loop until the end 
of the simulation. SGT module is presented as an example. After 
the initializations, module waits for the signal. When the signal is 
received, the six SGT variables are calculated and aggregated 
until writing out. When the specified aggregation chunk size is 
reached, SGT variables are written out using collective MPI-IO. 

One disadvantage of the SGT module is that it requires 
change in the source input reading code of AWPg to support 
various input modes. This code level change has minimal 
impact on the performance of other modules, or the main 
solver computation. This is because the number of related 
source points is much smaller than the total number of grid 
points, and fewer time steps are processed. 

We plan to do a comprehensive performance comparison 
between the SGT module enabled AWPg and AWP-SGTg. 

VIII. CONCLUSIONS AND OUTLOOK 
We have developed a highly efficient earthquake wave 

propagation software to perform CyberShake strain Green 
tensor and post-processing calculations. This new software is 
designed for effective use of NCSA’s hybrid BW system. 
Communication optimizations and scalable IO have produced a 
SGT solver that achieves excellent scalability on petascale 
systems. Our short-term goals are to increase the limit of 
seismic frequencies to above 1 Hz and produce a California-
wide seismic hazard model using the UCERF2 rupture forecast 
[9]. The computational size of the statewide model will be 
more than 200 times larger than the current Los Angeles 

models. Along with CyberShake PSHA calculations, we will 
apply this new code for use in full-3D waveform tomography, 
in the development of improved ismic velocity models, which 
are required inputs to CyberShake. Accelerating full-3D 
tomography based on the  current success of strain tensor 
calculation is our next goal. This software will provide highly 
scalable solutions for other problems of interest to SCEC as 
well as the wider scientific community to obtain better velocity 
models for use in structural studies of the Earth across a range 
of geographic scales. 
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