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The Multi- and Many-core Era

" |ncreasing number of core counts on modern processors
— Cray XE6 processors have 16 cores per node

— BG/Q has 16 cores (64 hardware threads) per “node”

= Two important trends are driving systems software
— Per-core resources are not scaling at the same rate as the number of
cores
e E.g., memory, TLB entries, network endpoints

e Hybrid programming models (such as MPl+threads) are becoming
common

— “System cores” are becoming an accepted fact of large systems
e BG/Q already provides an additional 17t core for system tasks

e Cray does not, but one could envision a similar model in the future
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MPI+Threads Hybrid Programming
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Thread Safety for MPlI+Threads Programming

MPI_THREAD_SINGLE
— MPI only, no threads

MPI_THREAD_FUNNELED

— QOutside OpenMP parallel region,
or OpenMP master region

MPI_THREAD_SERIALIZED

— QOutside OpenMP parallel region,
or OpenMP single region, or
critical region

MPI_THREAD_MULTIPLE

— Any thread is allowed to make
MPI calls at any time
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#pragma omp parallel for
fori=0;i<N;i++){

uuli] = (u[i] + u[i- 1] + u[i+ 1])/5.0;
}

MPI_Function ();

#pragma omp parallel

{
/* user computation */
#pragma omp single
MPI_Function ();

}

#pragma omp parallel

{
/* user computation */
#pragma omp critical
MPI_Function ();

}
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Increasing push towards THREAD_MULTIPLE

= Several applications are trying to take advantage of
THREAD MULTIPLE capabilities

= Many reasons:
— Uniformity of computational breakout (no special “MPI thread”)

— Better load balancing and progress (the first available thread can
send/receive data)

— Better network and communication performance (multiple threads
driving the network can improve performance substantially)

= We wanted to study what we should expect for such

applications on Blue Waters

— Used Graph500 as a case-study, primarily because of (1) it’s
irregularity and (2) it’s communication intensive nature
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Breadth-First Search in Graph500

= BFSis a subroutine for
many algorithms
— Betweenness centrality
— Maximum flows
— Connected components

— Spanning forests

= Characteristics of BFS

— irregular
— low-arithmetic ‘ ,
frontier vertex
— abundant parallelism o
‘ visited vertex
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Multithreaded Graph500 Benchmark

Graph traversal at some process

End level
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Point-to-Point asynchronous
communication

Threads Implementation exhibits
less communication
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BlueWaters

¢ Blue Gene/Q

Graph500 Benchmark: Processes vs. Threads
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Processes vs. Threads:
Throughput Benchmark on BlueWaters

= Throughput between two ®—©

nodes (O —( )
= Send data via processes or (- -@

threads (O r—>
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Contention in a Multithreaded MPI Model

MPI Init thread(.,MPI THREAD MULTIPLE,.); |® Multithreaded MPI

— Threads can make MPI calls

:l:pragma omp parallel concurrently
— Thread-safety is necessary
MPI Put();

} Threadl Thread2
Thread-safety can be ensured by: MPI_Put() MPI_Put()

= Critical Sections (Locks) ‘ 1

: . Sleeping/

- Possible Contention ! EN%ER -0 ENTER csj- Poling
= Using Lock-Free algorithms EX'T CS(

9 Non trivial ! / EXIT_CS()

—> Still does memory barriers % \>§
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Percentage of Locks Acquired

v

Hidden Evil: Lock Monopolization (Starvation)

Starvation Detection Algorithm

int waiting_threads = 0;

= Implementing critical sections . e

with spin-locks or mutexes acquire_lock(L)

. {
= Watch out: no fairness guara ntee! bool lock_acquired = false;
try_lock(L, lock_acquired)
Starvation measurement with 16 if (loclc acquired) S
(my_thread_id == last_holder) &&
processes and 16 threads/nodes i s S 1)
STARVATION_CASE;
Circular_comm Graph500 else if (!lock_acquired)
{
50 atomic_incr(waiting_threads);
atomic_decr(waiting_threads);
30 }
last_holder = my_thread_id;
20 return;
10 )

0123456 7 8 9101112131415

Number of Starving Threads
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How to fix Lock Monopolization?

Simplified Execution flow of a Thread-safe

Speed-up over Mutex

= Use locks that ensure fairness MPI implementation with critical sections
= Example: Ticket Spin-Lock /MP"CA;L‘E”TER/
= Basics: CS_ENTER
v
— Get my ticket and Wait my turn USEFUL WORK
— Ensures FIFO acquisition
2D Stencil, Hallo=2MB/direction, oo
Message size=1KB, 16Threads/Node COMPLETE?
55 Mutex ™ Ticket
2 CS EXIT
1.5 v
1 YIELD CS_EXIT
0.5 v
0 CS_ENTER
16 32 64
Number of Nodes / e /
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Priority Locking Scheme

= 3 basic locks:
— One for mutual exclusion in each priority level

— Another for high priority threads to block lower ones

= Watch out: do not forget fairness in the same priority level

— Use exclusively FIFO locks (Ticket)
2D Stencil, Hallo=2MB/direction, Message size=1KB,

16Threads/Node
Mutex Ticket M Priority

Speed-up over Mutex

16 32 64
Number of Nodes
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MPI-3 One-sided Communication
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MPI-3 One-sided Communication

= The basic idea of one-sided communication models is to
decouple data movement with process synchronization

— Should be able move data without requiring that the remote process
synchronize

— Each process exposes a part of its memory to other processes

— Other processes can directly read from or write to this memory

Global
Address
Space $ :
Private . Private Private
Memory =" / Memory ..Merory
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Two-sided Communication Example

MPI implementation
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MPI implementation
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One-sided Communication Example

Processor
Memory

Segment

Memory
Segment
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Segment

MPI implementation
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Asynchronous Communication Management on Cray
XE6

" One-sided communication operations are not always truly
one-sided

— Typically, hardware supported operations (such as contiguous PUT/
GET) are done in hardware; everything else is done in software (e.g.,
3D accumulates of double precision data)

— On Blue Waters, most operations are done in software because of
some issues in the layering structure

= Software implementation of one-sided operations means that

the remote process has to make an MPI call to make progress
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ASP

= Communication dedicated Helper processes handle incoming
messages instead of original target processes

PO P1
(Node 0) (Node 1) Helper Process PO P1
MPI_WIN_LOCK_ALL (Node 0) (Node 0) (Node 1)
"T """ =) MPI_WIN,LOCK_ALL "
Communication T
computation
T‘_K computation -
ULATE Lam=
-
Waiting for - -
target ———__.,M-PI:KCCUMU ATE
computatioé
i [
-‘--‘ ——————————————— i = = )
MPI_WIN_UNLOCK_ALL MPI_WIN_UNLOCK_ALL
Original communication Communication with ASP
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ASP design

User World Communicator

Exchange information

__1 _________________ } -
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Execution time on rank 0 (us)

Overlap improvement using 2
interconnected processes
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Scalability using increasing number of
nodes (1 process per node)
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Take Away

= Multi- and Many-core systems are already here
= Users are looking at different ways to utilize them

= Fewer resources means that we need ways of sharing —
threading models sound like a good approach, but
performance challenges need to be addressed

= Many cores means that some cores can be kept aside as
“system cores”

= We have investigated both models

Pavan Balaji, Argonne National Laboratory NCSA Bluewaters Symposium (05/15/2014)



