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Real-space Multi-Grid (RMG) 

Ø Density functional equations solved 
directly on the grid instead of with plane 
waves 
	
  

Multigrid techniques remove instabilities by 
working on one length scale at a time 
	
  

Convergence acceleration and automatic 
preconditioning on all length scales 
	
  

Non-periodic boundary conditions are as 
easy as periodic 
	
  

Compact “Mehrstellen” discretization 

Ø 

Ø 

Ø 

Ø 

Ø 

A[φ i ] + B[(Veff   + VNL )φ i ] = ε i B[Sφ i ] 
	
  

Allows for efficient massively parallel 
implementation (no FFTs) 
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Scalability as HPC architecture changes 

Multisocket/multicore SMP nodes 
1999 – Cray T3E 1-socket and core per node  
2013 – Cray XK6 2-sockets and 32 cores per node 
2020 - ? 

High speed interconnect between nodes 
Infiniband 
Myrinet 
Cray Gemini 

	
  
	
  

GPU/Accelerator 
Nvidia Fermi/Tesla/Kepler 
AMD Radeon HD 
Intel Xeon PHI 

Schematic of Cray XE6 

Multicore CPU's 
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Current machines  
Next generation 

400,000 cores 
1,000,000 cores 



Hybrid MPI/threads/OpenMP to improve scalability 

Use 1 MPI process per node rather than 1 process per core 
Inter node parallelization uses traditional MPI 
Intra node parallelization uses shared memory threads 
Extra cores used via Libraries, Pthreads, Openmp 

	
  
	
  
	
  

Process 0  Process 1 
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Pthreads for multigrid preconditioner 
Consider a typical electronic structure problem with N orbitals 
The computer system used for solution has P processing cores per node 
Orbitals may be processed independently and N>>P 
Natural parallelization method is to assign each orbital to a single core 
OpenMP or Pthreads should work equally well 

While each thread can operate independently is this the best approach? 

Core 0 
Core 1 

Core P-2 
Core P-1 

Core 0 
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Core P-1 
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Scaling test 

Test problem: Gas phase Amyloid 
Beta 1-42 protein 
Test system: Cray XK7 
1 node = 16 Opeteron cores + 1 
Nvidia K20x GPU accelerator 
Strong scaling 
	
  
	
  

Largest run used 139,392 CPU 
cores and 8712 GPU's. 

Each node has 16 cores 
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GPU acceleration for RMG 
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GPU programming very different from CPU 
	
  
	
  

CPU: 
High clock speed, small number of powerful execution units. 
Memory latency hidden by caches and out of order execution. 
Good single-threaded performance. 

	
  
	
  

GPU: 
Low clock speed, large number of weaker execution units. 
Memory latency hidden by high thread counts. 
Poor single-threaded performance. 

	
  
	
  

Most HPC codes have components that only run well on CPU's 
Mixed CPU/GPU model required 
Data transfer issues from CPU to GPU (PCI bus latency) 

Hints: Avoid writing GPU code as much as possible. 
Use vendor supplied libraries. 
Data transfer issues still require careful consideration 



GPU performance improvements 
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Small test case: C60 molecule in vacuum 
60 atoms: 200 electronic orbitals 

CPU only calculation Xeon 
workstation:12 cores No 
GPU's 
10.32 seconds/SCF step 

CPU/GPU calculation 
Xeon workstation:12 cores 
1 Nvidia K20 GPU 
6.72 seconds/SCF step 

Speedup of approximately 1.53 
	
  
	
  

Large test case: Solvated amyloid beta protein fragment 
3337 atoms: 4672 electronic orbitals 

CPU only calculation 
2904 nodes: 92,928 Opteron cores 
No GPU's 
76 seconds/SCF step 

CPU/GPU calculation 
2904 nodes: 46,464 Opteron cores 
2904 Nvidia K20x GPU's 
25 seconds/SCF step 

Speedup of approximately 3.02 

Performance on 3,872 Cray XK7 (K20x GPU) Blue Water nodes: 1.14 PFLOPS	
  



Introducing RmgLib 
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Portable library of C++ routines for HPC including 
Grid decomposition across MPI nodes 
Threading on a node 
Finite differencing (Mehrstellen and central operators) 
Communications (asynchronous ghost images) 
Recursive Multigrid solver with support routines 
 

Library supports multiple data types including 
      Float, double, complex  
 
Linux/Unix, Windows and OS/X support 
      Cmake build system 
 
Open source (BSD type) licensing with initial release in 2nd half 
2014 
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Single DNA Electron Transport 

•  Experiment in 0.05 mol/L saline 
solution 

•  Single walled carbon 
nanotubes as leads 

•  Alkane linkers  -CONH-(CH2)3       
connect B-form DNA to leads 

•  Very high transmission 
(T=0.05) gives resistance 
around 0.5 ΜΩ  

•  A single GT or AC mismatch 
increases the resistance of 
DNA nearly 300-fold relative to 
a well-matched one 

Guo, Barton, Nuckolls et al. Nature Nanotechnol. 2008 

     Our goals are to investigate 
the effects of   
Ø  Linkers  
Ø  Counterions 
Ø  Solvent 
Ø  DNA conformation 
Ø  DNA sequence 
 
 

G-guanine; C-cytosine; A-adenine; T-thymine 
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Introduction to DNA 

Backbones: sugar rings and phosphate 
groups 

Nucleobases: adenine(A), guanine(G), 
thymine(T) and cytosine(C). Base pairing can 
be formed via hydrogen bonds (A-T, G-C)  

      A-form      B-form      Z-form 
rise:    2.4 Å           3.6  Å          3.7 Å 
twist:   33.6°          35.9°           30.0° 

Different forms of DNA: 
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Calculations 

CONDUCTOR 

. . . . . . 

         LEFT LEAD  
 

 RIGHT LEAD 
 

Hamiltonian: orbital overlap: 

self-consistency 

Self-energy: 
LΣ RΣ

  
l  20 snapshots recorded from 2 

ns MD simulation for 
subsequent quantum 
calculations 

l  First solvation shell as well as 
alkane linkers and CNT leads 
included in the quantum 
calculation 

l  O(N) calculation to generate 
optimized localized orbitals 
for use in transport 
calculations 

l  Iterative non-equilibrium 
Green function (NEGF) 
method to calculate 
transmission self-consistently 

Fattebert, Bernholc, Phys. Rev. B 2000 
Nardelli, Fattebert, Bernholc, Phys. Rev. B 2001 
Lu, Meunier, Bernholc, Phys. Rev. Lett. 2005 
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DNA conductivity histogram 

 Large variation of conductivity (12 orders of magnitude for 10 BP) among snapshots 
v  Conformational gating 

v  Average current for 4 BP poly(G)-poly(C) is 0.1 nA 
v  Average current for 10 BP poly(G)-poly(C) is 0.0029 nA  
v  Assume an exponential decay model: 
 
 
 

 𝐼(𝐿)=𝐼0​𝑒𝑥𝑝⁠(−𝛽𝐿)  
 
 

 𝛽=0.18​Å↑−1  
 
 10 base-pair (10BP) 

configuration 
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Effect of individual counterions (snapshot 2) 
  

v  Two explicit counterions in 
snapshot 2 (right panel in a) 

v  The conductivity is 
unchanged when removing 
the counterion close to the 
phosphate group 

v  After the removal of a 
counterion near G4, the 
conductive states become 
more delocalized and the 
current increases by a factor 
of three 

v  Average current increases 
by a factor of 2 after 
removal of ions for the 20 
snapshots 
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Water effects on DNA conductivity 

  
v  Conductivity decreases with the number of water molecules around DNA 
v Water dipoles suppress conducting electrons’ amplitude on phosphate 

groups, leading to reduced conductivity 
v  Presence of water decreases the current by a factor of four 
v  Presence of ions decreases the current by a factor of two  
v  Large variation of conductivity persists 

 
 

 37 waters 
 

 135 waters 
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Correlation analysis of 10 BP  poly(G)-poly(C) DNA 

  
v  Helicoidal parameters in DNA calculated using 3DNA 
v We consider correlation of conductivity with not only the mean, but also with 

minimum and maximum values of the parameters 
v  The minimum overlap between successive guanine bases has the dominant 

correlation with conductivity 
v  Conductivity is highly sensitive to local distortions 
v  Snapshot 15: the minimum overlap is 1.46​Å↑2       ⇒ delocalized conducting states 

with relatively high conductivity (0.0137 nA) 
v  Snapshot 15’: minimum overlap reduced to 0.73​Å↑2   ⇒  less delocalized 

conducting states and lower conductivity (0.0045 nA) 

 
 

10 base pairs 
Correlation of conductivity with helicoidal parameters 
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Summary  
 

q RMG code rewrite to enhance scalability and portability 
 
v  Real space multigrid method for electronic structure calculations 
v  Hybrid model using MPI/threads/OpenMP 
v GPU acceleration: 1.144 PFLOPS using 3872 Bluewater XK nodes 
v Open source RmgLib to be released in 2nd half 2014 
   

q  Charge transport in DNA 

v  Charge transport through delocalized hole orbitals 
v  Highly dependent on instantaneous DNA configuration 
v  Largest conductivity for largest minimum overlap between guanine bases 
v  Counterions and water molecules significantly reduce conductance 
v  Unmatched base pairs act as barriers, reduce orbital delocalization. 




