
Portable and Productive

Performance on Hybrid Systems

with libsci_acc

Luiz DeRose

Sr. Principal Engineer

Programming Environments Director

Cray Inc.

February 2013
1

Luiz DeRose - Cray Inc © 2013

What is Cray Libsci_acc?

● Provide basic scientific libraries optimized for hybrid systems
● Incorporate the existing GPU libraries into Cray libsci

● Independent to, but fully compatible with OpenACC

● Multiple use case support

● Get the base use of accelerators with no code change
● Get extreme performance of GPU with or without code change

● Provide additional performance and usability

● Two interfaces

● Simple interface
● Auto-adaptation
● Base performance of GPU with minimal (or no) code change
● Target for anybody: non-GPU users and non-GPU expert

● Expert interface

● Advanced performance of the GPU with controls for data movement
● Target for CUDA, OpenACC, and GPU experts

● Does not imply that the expert interfaces are always needed to get great
performance

February 2013
2

Luiz DeRose - Cray Inc © 2013

Why libsci_acc ?

● Code modification is required to use existing GPU
libraries!

● Several scientific library packages already exist
● CUBLAS, CUFFT, CUSPARSE (NVIDIA), MAGMA (U Tennessee),

CULA (EM Photonics)

● No Compatibility to Legacy APIs
● cublasDgemm(….)
● magma_dgetrf(…)
● culaDgetrf(…)
● Why not dgemm(), dgetrf()?

● Not focused on Fortran API (C/C++)
● Require CUDA data types, primitives and functions in order to call

them

● Performance

February 2013
3

Luiz DeRose - Cray Inc © 2013

Auto-tuning

● Cray Autotuning framework has been built to tune BLAS
for accelerators
● GPU kernel codes are built using code generator

● Enormous offline auto-tuning is used to build a map of performance to
input

● An adaptive library is built from the results of the auto-tuning

● At run-time, your code is mapped to training set of input

● Best kernel for your problem is used

February 2013
4

Luiz DeRose - Cray Inc © 2013

Simple Interface

● Supports the standard API in the original form

● Will perform all GPU dirty-work for you
● Initialize data structures on GPU

● Split your problem into a CPU portion and GPU portion

● Copy data to the GPU memory from CPU memory

● Perform GPU and CPU operations

● Copy data back to CPU memory

● Library-heavy codes can use GPUs with no code change

● Is not only a tool for simple usage
● If you don’t need the data on the GPU afterwards, use the simple

interface

● Simple API has automatic adaptation

February 2013

5
Luiz DeRose - Cray Inc © 2013

Adaptation in the Simple Interface

● You can pass either host pointers or device pointers with
the simple interface

● A is in host memory
 dgetrf(M, N, A, lda, ipiv, &info)

● Performs hybrid operation on GPU

● if problem is too small, performs host operation

● Pass Device memory
 dgetrf(M, N, d_A, lda, ipiv, &info)

● Performs hybrid operation on GPU

● BLAS 1 and 2 performs computation local to the data
location
● CPU-GPU data transfer is too expensive to exploit hybrid execution

February 2013
6

Luiz DeRose - Cray Inc © 2013

Libsci_acc: Simple Interface for BLAS3 and
LAPACK

User

Application

Libsci_acc

DGEMM_ACC

dgemm_();
where is

the data?

On GPU

On Host

Libsci_acc

Hybrid DGEMM

Large

enough?

Libsci

DGEMM

February 2013
7

Luiz DeRose - Cray Inc © 2013

Expert Device & CPU Interface

● Device interface gives higher degrees of control

● Allow users to explicitly specify the execution
● Every routine in libsci has a version with _acc and _cpu

suffix
● e.g. dgetrf_acc, dgetrf_cpu

● Simple API for device memory and _acc API are the same

February 2013
8

Luiz DeRose - Cray Inc © 2013

Usage - Basics

● Supports Cray and GNU compilers.

● Fortran and C interfaces (column-major assumed)
● Load the module craype-accel-nvidia35.

● Compile as normal (dynamic libraries used)

● To enable threading in the CPU library, set
OMP_NUM_THREADS
● E.g. export OMP_NUM_THREADS=16

● Assign 1 single MPI process per node
● Multiple processes cannot share the single GPU

● Execute your code as normal

February 2013
9

Luiz DeRose - Cray Inc © 2013

Libsci_acc with OpenACC

● If the code uses

OpenACC, it’s

possible to use the

library with directives

● All data management

performed by

OpenACC

● Calls the device

version of dgemm

● All data is in CPU

memory before and

after data region

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm_acc('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

February 2013
10

Luiz DeRose - Cray Inc © 2013

Libsci_acc with OpenACC

● Libsci_acc is a bit

smarter that this

● Since ‘a,’ ‘b’, and

‘c’ are device

arrays, the library

knows it should

run on the device

● So just dgemm is

sufficient

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm_acc('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm ('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

February 2013
11

Luiz DeRose - Cray Inc © 2013

libsci_acc BLAS Routines Available

● BLAS 3 - Full HYBRID Implementations
● [s,d,c,z]GEMM
● [s,d,c,z]GEMM
● [s,d,c,z]TRSM
● [z,c]HEMM
● [s,d,c,z]SYMM
● [s,d,c,z]SYRK
● [z,d]HERK
● [s,d,c,z]SYR2K
● [s,d,c,z]TRMM

● The following are supported without HYBRID
implementations because there is no performance
advantage

● All BLAS 2 Routines

● All BLAS 1 Routines

February 2013
12

Luiz DeRose - Cray Inc © 2013

libsci_acc LAPACK Routines Available

● Full HYBRID Implementations:
● [d,z]GETRF (LU Factorization)

● [d,z]POTRF (Cholesky Factorization)

● [d,z]GETRS (System Solver)

● [d,z]POTRS (System Solver)

● [d,z]GESDD* (Generalized Singular Values)

● [d,z]GEBRD (Generalized Bidiagonalization)

● [d,z]GEQRF* (QR Factorization)

● [d,z]GELQF (LQ Factorization

● [d,z]GEEV (Non-symmetric Eigenvalues)

● DSYEVR* / ZHEEVR* (Hermitian/Symmetric Eigenvalues)

● DSYEV / DSYEVD (Hermitian/Symmetric Eigenvalues)

● ZHEEV / ZHEEVD (Hermitian/Symmetric Eigenvalues)

● DSYGVD / ZHEGVD (Hermitian/Symmetric Eigenvalue System Solver)

* Include Cray Proprietary Optimizations

February 2013
13

Luiz DeRose - Cray Inc © 2013

Summary

● Access to libsci_acc routines is simple
● No need to explicitly link - Programming Environment drivers (cc, ftn,

CC) do this for you

● Just target the GPU by loading module

● Can automatically take advantage of threading on CPU
● Just set OMP_NUM_THREADS and run

● Simple interface available to enable hybrid, CPU or GPU
execution of a routine depending on where memory
pointers reside and problem size

● Interface for advanced control is also available

February 2013
14

Luiz DeRose - Cray Inc © 2013

Case Study: the Himeno Benchmark

● Parallel 3D Poisson equation solver
● Iterative loop evaluating 19-point stencil

● Memory intensive, memory bandwidth bound

● Fortran, C, MPI and OpenMP implementations
available from
http://accc.riken.jp/HPC_e/himenobmt_e.html

● Strong scaling benchmark
● XL configuration: 1024 x 512 x 512 global volume

● Expect halo exchanges to become significant

● Use asynchronous GPU data transfers and kernel launches to help
avoid this

February 2013
15

Luiz DeRose - Cray Inc © 2013

http://accc.riken.jp/HPC_e/himenobmt_e.html
http://accc.riken.jp/HPC_e/himenobmt_e.html

Porting Himeno to the Cray XK6

● Several versions tested, with communication implemented
in MPI and Fortran coarrays

● GPU version using OpenACC accelerator directives
● Total number of accelerator directives: 27

● plus 18 "end" directives

● Arrays reside permanently on the GPU memory

● Data transfers between host and GPU are:
● Communication buffers for the halo exchange

● Control value

● Cray XK6 timings compared to best Cray XE6 results
(hybrid MPI/OpenMP)

February 2013
16

Luiz DeRose - Cray Inc © 2013

Himeno performance

● XK6 GPU is about 1.6x faster than XE6

● OpenACC async implementation is ~ 8% faster than
OpenACC blocking

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

P
e

rf
o

rm
an

ce
 (

TF
lo

p
/s

)

Number of nodes

Himeno Benchmark - XL configuration
XE6 MPI/OMP XK6 async XK6 blocking

February 2013
17

Luiz DeRose - Cray Inc © 2013

CloverLeaf

● 2D hydro code, with several stencil-type operations

● Developed by AWE
● Using to explore programming models

● to be released as Open Source to the Mantevo project hosted by
Sandia (miniapps)

● Current performance for 87 steps

Mesh CUDA OpenACC

960x960 2.44 2.03

3840x3840 37.42 31.77

February 2013
18

Luiz DeRose - Cray Inc © 2013

GAMESS

● Computational chemistry package suite developed and
maintained by the Gordon Group at Iowa State University
● http://www.msg.ameslab.gov/gamess/

● ijk-tuples kernel - Source changes
● CUDA - 1800 lines of hand-coded CUDA
● OpenACC – approximately 75 directives added to the original source

● Performance of ijk-tuples on 16 XK6 Nodes with Fermi
● CPU Only (16 ranks per node) 311 Seconds
● CUDA – 134 seconds
● OpenACC – 138 seconds
● CUDA was only ~3% faster than OpenACC

● Performance of ijk-tuples on 16 XK6 Nodes with Kepler
● CPU Only (16 ranks per node) 311 Seconds
● CUDA – 76.6 seconds
● OpenACC – 68.1 seconds
● OpenACC was ~12.5% faster than CUDA !!

February 2013

19
Luiz DeRose - Cray Inc © 2013

http://www.msg.ameslab.gov/gamess/

Summary

● Cray provides a high level programming environment for
acceletate Computing
● Fortran, C, and C++ compilers

● OpenACC directives to drive compiler optimization

● Compiler optimizations to take advantage of accelerator and
multi-core X86 hardware appropriately

● Cray Reveal
● Scoping analysis tool to assist user in understanding their code and taking

full advantage of SW and HW system

● Cray Performance Measurement and Analysis toolkit

● Single tool for GPU and CPU performance analysis with statistics for the
whole application

● Parallel Debugger support with DDT

● Auto-tuned Scientific Libraries support

● Getting performance from the system … no assembly required

February 2013
20

Luiz DeRose - Cray Inc © 2013

