®e
CRANY”
\

° \
\

Portable and Productive ~
Performance on Hybrid Systems
with libsci acc

Luiz DeRose
Sr. Principal Engineer
Programming Environments Director
Cray Inc.

® e
(et — P-C Vg
i

° \
\

What is Cray Libsci_acc?

e Provide basic scientific libraries optimized for hybrid systems
e Incorporate the existing GPU libraries into Cray libsci

e Independent to, but fully compatible with OpenACC

e Multiple use case support
e Get the base use of accelerators with no code change
e Get extreme performance of GPU with or without code change

e Provide additional performance and usability

e Two interfaces
e Simple interface
e Auto-adaptation
e Base performance of GPU with minimal (or no) code change
e Target for anybody: non-GPU users and non-GPU expert

e EXpert interface
e Advanced performance of the GPU with controls for data movement
e Target for CUDA, OpenACC, and GPU experts

e Does not imply that the expert interfaces are always needed to get great
performance

February 2013 Luiz DeRose - Cray Inc © 2013 @

® e
cRAaYyY |
\

° \
\

Why libsci_acc ?

e Code modification is required to use existing GPU
libraries! \

e Several scientific library packages already exist

e CUBLAS, CUFFT, CUSPARSE (NVIDIA), MAGMA (U Tennessee),
CULA (EM Photonics)

e No Compatibility to Legacy APIs
e cublasDgemm(....)
e magma_dgetrf(...)
e culaDgetrf(...)
e Why not dgemm(), dgetrf()?

e Not focused on Fortran API (C/C++)

o F\;]equire CUDA data types, primitives and functions in order to call
them

e Performance

February 2013 Luiz DeRose - Cray Inc © 2013 @

® e
CRANY |
o

° \
\

Auto-tuning

e Cray Autotuning framework has been built to tune BLAS
for accelerators \
e GPU kernel codes are built using code generator

e Enormous offline auto-tuning is used to build a map of performance to
Input

e An adaptive library is built from the results of the auto-tuning
e At run-time, your code is mapped to training set of input

e Best kernel for your problem is used

February 2013 Luiz DeRose - Cray Inc © 2013 @

Simple Interface

e Supports the standard API in the original form

e Will perform all GPU dirty-work for you

e Initialize data structures on GPU
Split your problem into a CPU portion and GPU portion
Copy data to the GPU memory from CPU memory
Perform GPU and CPU operations
Copy data back to CPU memory

e Library-heavy codes can use GPUs with no code change

e Is not only atool for simple usage

o If you don’t need the data on the GPU afterwards, use the simple
Interface

e Simple APl has automatic adaptation

February 2013 Luiz DeRose - Cray Inc © 2013

®e
CRANY”
\

° \
\

Adaptation in the Simple Interface

e You can pass either host pointers or device pointers with
the simple interface \

e Ais in host memor
dgetrf (M, N, lda, ipiv, &info)

e Performs hybrid operation on GPU
e if problem is too small, performs host operation

e Pass Device memor
dgetrf (M, N, @ lda, ipiv, &info)

e Performs hybrid operation on GPU

e BLAS 1 and 2 performs computation local to the data
location
e CPU-GPU data transfer is too expensive to exploit hybrid execution

February 2013 Luiz DeRose - Cray Inc © 2013 @

Libsci_acc: Simple Interface for BLAS3 and
LAPACK

User

Application

February 2013

dgemm_();

WEI GRS
the data?

Libsci_acc
DGEMM_ACC

Libsci_acc
Hybrid DGEMM

Libsci
DGEMM

N

Luiz DeRose - Cray Inc © 2013

® e
CRANY |
\

° \
\

Expert Device & CPU Interface

e Device interface gives higher degrees of control

e Allow users to explicitly specify the execution

e Every routine in libsci has a version with _acc and _cpu
suffix

e e.9. dgetrf_acc, dgetrf _cpu

e Simple API for device memory and _acc API are the same

February 2013 Luiz DeRose - Cray Inc © 2013

Usage - Basics
e Supports Cray and GNU compilers.

e Fortran and C interfaces (column-major assumed)
e Load the module craype-accel-nvidia35.
e Compile as normal (dynamic libraries used)

e To enable threading in the CPU library, set
OMP_NUM_ THREADS
e E.g. export OMP_NUM_THREADS=16

e Assign 1 single MPI process per node
e Multiple processes cannot share the single GPU

e Execute your code as normal

February 2013 Luiz DeRose - Cray Inc © 2013 @

Libsci_acc with OpenACC

e If the code uses
OpenACC, it’s
possible to use the
library with directives

e All data management
performed by
OpenACC

e Calls the device
version of dgemm

e All datais in CPU
memory before and
after data region

February 2013

1Sacc data copy(a,b,c)

1Sacc parallel
Do Something
1Sacc end parallel

!Sacc host data use device(a,b,c)

call dgemm acc('n','n' ,m,n,k,é&
alpha,a,lda, &
b,1ldb,beta,c,1ldc)

!Sacc end host data
!Sacc end data

Luiz DeRose - Cray Inc © 2013

Libsci_acc with OpenACC

e Libsci_acc is a bit
smarter that this

e Since ‘a,’ ‘b’, and
‘c’ are device
arrays, the library
knows it should
run on the device

e SO just dgemm is
sufficient

February 2013

!Sacc data copy(a,b,c)

ISacc parallel
Do Something
!ISacc end parallel

!Sacc host data use device(a,b,c)

call dgemm ('n','n'",m,n,k,&
alpha,a,lda, &
b,1db,beta,c,1ldc)

!Sacc end host data
!Sacc end data

Luiz DeRose - Cray Inc © 2013

libsci_acc BLAS Routines Available

e BLAS 3 - Full HYBRID Implementations

s,d,c,z]GEMM
s,d,c,z]GEMM
s,d,c,z]TRSM
z,C|[HEMM
s,d,c,z]SYMM
s,d,c,z]SYRK
z,dJHERK
s,d,c,z]SYR2K
s,d,c,z]TRMM

e The following are supported without HYBRID
Implementations because there is no performance
advantage

e All BLAS 2 Routines
e All BLAS 1 Routines

February 2013 Luiz DeRose - Cray Inc © 2013

libsci_acc LAPACK Routines Available

e Full HYBRID Implementations:

d,z]

d,z]

DSYEVR* /[ZHEEVR* (Hermitian/Symmetric Eigenvalues)
DSYEV / DSYEVD (Hermitian/Symmetric Eigenvalues)
ZHEEV /| ZHEEVD (Hermitian/Symmetric Eigenvalues)

d,z]
d,Z]
d,Z]
d,z]
d,Z]
d,Z]
d,z]

GETRF (LU Factorization)

POTRF (Cholesky Factorization)
GETRS (System Solver)

POTRS (System Solver)

GESDD* (Generalized Singular Values)
GEBRD (Generalized Bidiagonalization)
GEQRF* (QR Factorization)

GELQF (LQ Factorization

GEEV (Non-symmetric Eigenvalues)

DSYGVD / ZHEGVD (Hermitian/Symmetric Eigenvalue System Solver)

* Include Cray Proprietary Optimizations

February 2013

Luiz DeRose - Cray Inc © 2013

()

® e
CRANY |
\

° \
\

Summary

e Access to libsci_acc routines is simple

e No need to explicitly link - Programming Environment drivers (cc, ftn,
CC) do this for you

e Just target the GPU by loading module

e Can automatically take advantage of threading on CPU
e Just set OMP_NUM_ THREADS and run

e Simple interface available to enable hybrid, CPU or GPU
execution of a routine depending on where memory
pointers reside and problem size

e Interface for advanced control is also available

February 2013 Luiz DeRose - Cray Inc © 2013

Case Study: the Himeno Benchmark RS

\
\
e Parallel 3D Poisson equation solver O/OP
e [terative loop evaluating 19-point stencil o’doo’.pc’do ‘
e Memory intensive, memory bandwidth bound

0162
e Fortran, C, MPl and OpenMP implementations
available from

http://accc.riken.|p/HPC e/himenobmt e.html

e Strong scaling benchmark
e XL configuration: 1024 x 512 x 512 global volume
e EXxpect halo exchanges to become significant

e Use asynchronous GPU data transfers and kernel launches to help
avoid this

February 2013

Luiz DeRose - Cray Inc © 2013 @

http://accc.riken.jp/HPC_e/himenobmt_e.html
http://accc.riken.jp/HPC_e/himenobmt_e.html

®e
CRANY”
\

° \
\

e Several versions tested, with communication implemented
In MPIl and Fortran coarrays \

Porting Himeno to the Cray XK6

e GPU version using OpenACC accelerator directives

e Total number of accelerator directives: 27
e plus 18 "end" directives

e Arrays reside permanently on the GPU memory

e Data transfers between host and GPU are:
e Communication buffers for the halo exchange
e Control value

e Cray XK6 timings compared to best Cray XE6 results
(hybrid MPI/OpenMP)

February 2013 Luiz DeRose - Cray Inc © 2013

Himeno performance

e XK6 GPU Is about 1.6x faster than XE6

e OpenACC async implementation is ~ 8% faster than
OpenACC blocking

February 2013

Performance (TFlop/s)

5.0

P
o

w
o

g
o

=
o

0.0

Himeno Benchmark - XL configuration

—o—-XE6 MPI/OMP —B=XK6async =#—XK6 blocking

\

_—

_~

L

—

32 64 9% 128
Number of nodes

Luiz DeRose - Cray Inc © 2013

CRANY”
\

\

\

® e
o

° \
\

CloverLeaf

e 2D hydro code, with several stencil-type operations

e Developed by AWE

e Using to explore programming models

e to be released as Open Source to the Mantevo project hosted by
Sandia (miniapps)

e Current performance for 87 steps

CUDA OpenACC

960x960 2.44 2.03
3840x3840 37.42 31.77

February 2013 Luiz DeRose - Cray Inc © 2013

® e
CRANY |
\

° \
\

GAMESS

e Computational chemistry package suite developed and
maintained by the Gordon Group at lowa State University
e http://www.msg.ameslab.gov/gamess/

e Ijk-tuples kernel - Source changes
e CUDA - 1800 lines of hand-coded CUDA
e OpenACC - approximately 75 directives added to the original source

e Performance of ijk-tuples on 16 XK6 Nodes with Fermi
e CPU Only (16 ranks per node) 311 Seconds
e CUDA - 134 seconds
e OpenACC - 138 seconds
e CUDA was only ~3% faster than OpenACC

e Performance of ijk-tuples on 16 XK6 Nodes with Kepler
e CPU Only (16 ranks per node) 311 Seconds
e CUDA - 76.6 seconds
e OpenACC - 68.1 seconds
e OpenACC was ~12.5% faster than CUDA !!

February 2013 Luiz DeRose - Cray Inc © 2013

http://www.msg.ameslab.gov/gamess/

®e
CRANY”
\

° \
\

Summary

e Cray provides a high level programming environment for
acceletate Computing
e Fortran, C, and C++ compilers

e OpenACC directives to drive compiler optimization

o Compiler optimizations to take advantage of accelerator and
multi-core X86 hardware appropriately

e Cray Reveal

e Scoping analysis tool to assist user in understanding their code and taking
full advantage of SW and HW system

~ZW RE
o Cray Performance Measurement and Analysis toolkit .

e Single tool for GPU and CPU performance analysis with statistics for the
whole application

« Parallel Debugger support with @llin€éa popT

www.allinea.com

Auto-tuned Scientific Libraries support
e Getting performance from the system ... no assembly required

February 2013 Luiz DeRose - Cray Inc © 2013

