
Introduction Coding for Blue Waters Results Closing Remarks

Simulation and Visualization of Tornadic Supercells on
Blue Waters

PRAC: “Understanding Tornadoes and Their Parent Supercells Through Ultra-High Resolution
Simulation/Analysis”

Leigh Orf1 Robert Wilhelmson2,3 Roberto Sisneros3

Brian Jewett2 George Bryan4 Mark Straka3 Paul Woodward5

1Central Michigan University
2University of Illinois

3NCSA
4National Center for Atmospheric Research

5University of Minnesota

NEIS-P2 Symposium, NCSA Auditorium, May 21, 2013

Introduction Coding for Blue Waters Results Closing Remarks

Outline

1 Introduction
Statement of the problem
The CM1 cloud model
VisIt

2 Coding for Blue Waters
I/O and visualization
CM1 I/O additions
VisIt plugin
Improving CM1 performance using Paul Woodward’s
techniques

3 Results
CM1 performance
VisIt performance

4 Closing Remarks

Introduction Coding for Blue Waters Results Closing Remarks

Tornadoes

• What occurs within supercell thunderstorms that leads to
tornado formation (tornadogenesis)?

• What balance of forces exists during a long-lived tornado
in a supercell?

• Can we predict with any skill when such tornadoes will
occur vs. when we get a weak tornado or no tornado at all?

Introduction Coding for Blue Waters Results Closing Remarks

The scientific approach

• Utilize an idealized cloud model designed specifically for
massively parallel architectures (CM1)

• Initialize simulated storms in environments known to be
conducive to creating supercells with strong, long-track
tornadoes

• Ultimate scientific goal: Catch tornadogenesis in the act,
followed by a strong, long-track tornado, for different
storms

Introduction Coding for Blue Waters Results Closing Remarks

The scientific challenge

• Only ∼20-25% of supercells produce tornadoes
• Only ∼5-10% of supercell tornadoes are strong, long-track

tornadoes
• We do not clearly understand why some storms produce

tornadoes and others do not, although certain
environmental characteristics have been correlated with
supercells that produce strong tornadoes

• Much like with the real atmosphere, the details of the storm
that will unfold in the model is very difficult to predict

• We therefore cannot be certain that a given simulation will
produce the storm we wish to analyze

Introduction Coding for Blue Waters Results Closing Remarks

The computational challenge

• A very small time step is required to maintain
computational stability

• Each time step involves many computation and
communication cycles, some global communication1

• High temporal frequency of model state needs to be saved
to properly capture features of interest (winds are moving
fast during tornado genesis and maintenance)

• Hence, a tremendous amount of I/O is possible when
saving the full model state at high temporal frequency
(O(1PB))

1Adaptive time stepping only

Introduction Coding for Blue Waters Results Closing Remarks

CM1

• Developed by George Bryan (National Center for
Atmospheric Research)

• Lightweight
• Fortran 95
• Dynamic memory allocation
• Run-time configurability
• MPI (non-blocking) + OpenMP loop parallelization

(OMP_NUM_THREADS=2)
• Several numerics and physics options
• Somewhat modular, making it relatively straightforward to

modify

Introduction Coding for Blue Waters Results Closing Remarks

VisIt

• Developed at Lawrence Livermore, supported on Blue
Waters

• Robust plugin development environment
• Designed for massively parallel architectures
• Has its own programming language for derived quantities
• Has a Python interface
• Client-server model lets you display data on your

workstation while rendering on Blue Waters
• Easy to create scripts for movie creation
• etc. . .

Introduction Coding for Blue Waters Results Closing Remarks

Blue-Waters specific code creation/modification

• Primary changes thus far have involved I/O and
visualization
X CM1: Addition of HDF5 output option. Combination of serial

(for “3D” files) and parallel (for “2D” files) HDF5 routines.
3D: So-called 3D files each contain multiple time levels, each

time level containing multiple 3D floating-point arrays of the
model state with the arrays spanning the computational
memory space of each node

2D: So-called 2D files contain single time levels, with multiple
variables (many of which contain statistical and derived
fields), each a 2D array spanning the full horizontal model
domain at a single vertical level (“weather map” view)

X VisIt: Creation of VisIt plugin to work with 3D files natively

Introduction Coding for Blue Waters Results Closing Remarks

HDF5 as a CM1 output option: Serial (for 3D files)

• Assign one I/O core per node
• Intranode communication done to collect data to I/O core

(fast, does not hit HSN)
• This requires rank reordering to ensure virtual topology is

mapped to the hardware topology

• HDF5 “core” driver is utilized. One HDF5 file per node is
buffered to memory

• File contains a group for each time level saved, with 3D
floating point arrays saved in each group

• Buffered writes are nearly instantaneous (some overhead
for compression)

• gzip compression on floating point data reduces I/O
footprint

Introduction Coding for Blue Waters Results Closing Remarks

HDF5 as a CM1 output option: Serial (for 3D files)

• CM1 model itself only utilizes ∼3% of available memory,
we can write 50-100 time levels to memory before flushing
to disk

• Hence, 1 file per node is written, and each file contains
around 10 3D variables at 50-100 time levels

• This approach reduces the number of times data is written
to disk, and ensures large files (which reduces latency
associated with writing many small files)

• Memory utilization is less predictable than we had hoped
with the core driver, OOM killer has bit us more than once

Introduction Coding for Blue Waters Results Closing Remarks

HDF5 as a CM1 output option: Parallel (for 2D files)

• All-ranks-to-one-file written infrequently in
2D files. No buffering or compression
options for Parallel HDF5.

• pHDF5 transparently handles the
communication, setting the number of
writers, etc., when writing a single file
spread out amongst all MPI ranks

• 2D files provide a snapshot of the full
model domain at a given level, good for
monitoring progress - can be viewed
immediately with tools like ncview

• Performance is not very good for writing
this way, need to look into this (have tried
changing number of OSTs, no discernible
change)

Introduction Coding for Blue Waters Results Closing Remarks

Creation of a VisIt plugin for 3D HDF5 data

• Plugin was created after HDF5 3D file format strategy was
worked out

• API / low-level file management code written in C “hides”
the complexity of the multiple file / multiple time levels per
file structure

• In order to reduce disk operations, a one-time utility is run
to create a small HDF5 file that contains data about the
CM1 3D file contents - this is what VisIt is pointed to.

• Can specify only subdomain, hiding full domain from VisIt
(drastically reducing I/O time)

• Due to I/O abstraction, plugin is not restricted to the size
and number of VisIt domains - plugin can therefore set
domain dimensions that work best for given number of
ranks, hardware, etc.

• API used for all 3D access (not just VisIt)

Introduction Coding for Blue Waters Results Closing Remarks

API for 3D HDF5 data

Call from avtcm1visitFileFormat.C:

read_hdf_mult_md ((f l o a t ∗) rv−>GetVoidPointer (0) ,
t opd i r , t imed i r , nodedir , n t imed i rs , dn ,
d i r t imes , a l l t i m e s , n to t t imes ,
a l l t i m e s [t imes ta te] , (char ∗) varname ,
x_s ta r t , y_s ta r t , x_stop , y_stop ,
z_s ta r t , z_stop , nx , ny , nz ,
nodex , nodey) ;

For details, see whitepaper
“An I/O strategy for CM1 on Blue Waters”

http://orf5.com/bw/cm1tools-March2013.pdf

Introduction Coding for Blue Waters Results Closing Remarks

Improving CM1 performance using Paul Woodward’s techniques

• Paul Woodward’s group has achieved sustained
performance of 1.5 Pflop s−1 on Blue Waters with his PPM
code

• This is due in part to the numerical technique employed
and the way blocks of memory (briquettes) are manually
mapped to cache, increasing computational intensity (a
measure of the number of flops performed divided by the
number of off-chip words either read or written)

• A code translator is being developed which takes
“standard” PPM Fortran as input and outputs “enhanced”
code that runs faster

• Work is underway to apply these techniques to CM1

Introduction Coding for Blue Waters Results Closing Remarks

CM1 performance

• Entire 2 hours of cloud simulation at 20 m horizontal
resolution can run in fewer than 12 hours of wallclock time
on 204,800 cores (6400 nodes) for 10 s 3D I/O2

• Wallclock time is most sensitive to I/O frequency, less
sensitive to amount of microphysical calculations (not
anticipated)

• Communication takes up about 20% of wallclock time

2There were issues with /scratch for this run; calculations indicate we
could have saved every 5 s with healthy /scratch and still fit in 12 hour
wallclock window

Introduction Coding for Blue Waters Results Closing Remarks

CM1 timings

3s I/O, 5s stats,
GS/LFO microphy
8:1 wall:cloud

mp_total 22.80%
write 19.63%
stat 18.53%
microphy3 13.90%
sound 7.28%
advs 5.87%
tmix 3.52%

10s I/O, 10s stats,
Morrison microphy
5:1 wall:cloud

write4 20.87%
mp_total 17.67%
stat 16.96%
advs 11.62%
sound 9.50%
tmix 6.62%
microphy 4.53%

60s I/O, 30s stats,
Morrison microphy
4:1 wall:cloud

mp_total 23.60%
advs 14.73%
sound 11.98%
stat 11.54%
write 8.91%
tmix 8.39%
microphy 5.23%

3Unclear as to why GS/LFO is so much more expensive than Morrison
4Scratch issues, write probably more like 12–15% for healthy scratch

Introduction Coding for Blue Waters Results Closing Remarks

Take-home message for CM1 timings

• For 20 meter grid spacing and 3 second I/O we can fit 2
hours of cloud into two 12-hour runs using Morrison
microphysics

• For doing science, we do not need to save entire
simulation with high temporal frequency over full domain
(For making full-storm production movies/video we do)

• Adaptive time stepping costs us early (with collective stats
being calculated at each time step) but pays off later when
tornado forms, ratcheting down the time step, keeping
model stable

• Could go with static time step early, run adaptive from
restart file

• Could calculate stability parameter every nth time step
instead of every time step

Introduction Coding for Blue Waters Results Closing Remarks

VisIt performance

• Plug-in fully operational
• Raycasting produces good results but sometimes crashes

(OOM, communicating samples)

Supercell cloud and hydrometeors

Introduction Coding for Blue Waters Results Closing Remarks

VisIt performance

Cloud with multiple vortex
tornado

Updraft and downdraft with
multiple vortex tornado,
surface temperature

Note: only subdomain
rendered

Introduction Coding for Blue Waters Results Closing Remarks

Closing Remarks

• We are able to successfully run supercell simulations that
were previously not possible with other (e.g., XSEDE)
resources

• Visualization and conversion tools (VisIt, tools to convert
model data to other formats) are working and stable

• I/O is a potential bottleneck but we have found solutions
that allow our scientific goals to be achieved

• Biggest challenge is very basic: Getting the model to
produce the type of simulation we are interested in
achieving

• This issue is fundamental to computational meteorology.
We know CM1 can produce a tornado in a supercell
simulation, but these high-resolution simulations are
uncharted territory

Questions?

Downburst-producing
thunderstorm rendered on
Blue Waters

(CM1 model
run on kraken)

Vis. credit:
Rob Sisneros, NCSA

	Introduction
	Statement of the problem
	The CM1 cloud model
	VisIt

	Coding for Blue Waters
	I/O and visualization
	CM1 I/O additions
	VisIt plugin
	Improving CM1 performance using Paul Woodward's techniques

	Results
	CM1 performance
	VisIt performance

	Closing Remarks

