
Running Applications on Blue Waters

Jing Li, Omar Padron, Gengbin Zheng

Modules

• The user environment is controlled using the modules

environment management system.

• The module utility helps you quickly identify software that

is available on the system and makes it easier to modify

your environment.

• List all available modules and versions:

• module avail

• List all modules currently loaded

• module list

Modules (cont.)

• Modules may be loaded, unloaded, or swapped either on

a command line or in $HOME/.bashrc (.cshrc for csh)

shell startup file. E.g.

• module load PrgEnv-gnu

• module unload PrgEnv-gnu

• module swap PrgEnv-gnu PrgEnv-cray

• Module load ddt

• Module load fftw

Blue Waters Programming Environments

Three programming environments available,

managed by the module utility:

• Cray Programming Environment, the default

• PGI programming environment

• Gnu programming environment

4

Blue Waters Programming Environments

• Programming Environments managed through the module

utility.

• Modules help ensure that your environment is always

configured properly. Paths, libraries, etc, will be properly

set by the chosen programing environment using module.

• Compiler wrappers ftn, cc, CC, etc, enable the use of

desired compilers, and their corresponding include files,

library paths etc.

5

Blue Waters Programming Environments

• ``module list’’ shows all currently loaded software

modules, including the programing environment, which is

defaulted to PrgEnv-cray

• ``module avail’’ displays all the available software

modules

• ``module swap’’ or ``module unload/load’’ both can

change the programming environments. For example:

module swap PrgEnv-cray PrgEnv-pig

swiches from Cray to Pgi.

6

Programming Models

• MPI

• OpenMP

• Hybrid Programming: MPI + OpenMP

• Partitioned Global Address Space (PGAS) paradigm

• CAF

• UPC

• Charm++

MPI

• Compiling and linking is performed using wrapper scripts

ftn, cc, and CC for source code written in Fortran, C, and

C++, respectively.

• Wrappers invoke the appropriate compiler based on

the current Programming Environment

• Wrappers automatically link in a wide variety of libraries as

necessary, including MPI (for instance, -lmpi is not required

and will cause the link step to fail).

OpenMP

• a shared memory programming paradigm on the

node

• Cray compilers:

• Default enabled: -h thread2

• GNU compilers:

• -fopenmp

• PGI compilers:

• -mp

MPI+OpenMP

• MPI+OpenMP is an efficient way to exploit multicore processors on

Blue Waters.

• Each OpenMP thread typically runs on one compute core (i.e.

maximum 32 on BW).

• Thread safety

• Required to specify the desired level of thread support

• set environment variable MPICH_MAX_THREAD_SAFETY to

different values to increase the thread safety.

• MPI_THREAD_SINGLE (default)

• MPI_THREAD_FUNNELED

• MPI_THREAD_SERIALIZED

• MPI_THREAD_MULTIPLE

Two MPI Tasks on a Compute Unit

 ("Dual-Stream Mode")
• An MPI task is pinned to each integer

unit

• Each integer unit has exclusive access

to an integer scheduler, integer

pipelines and L1 Dcache

• The 256-bit FP unit, instruction fetch,

and the L2 Cache are shared between

the two integer units

• 256-bit AVX instructions are dynamically

executed as two 128-bit instructions if

the 2nd FP unit is busy

• When to use

• Code is highly scalable to a large

number of MPI ranks

• Code can run with a 2GB per task

memory footprint

• Code is not well vectorized
Shared L2 Cache

Fetch

Decode

FP Scheduler

1
2
8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2
8
-b

it
 F

M
A

C

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Int
Scheduler

Int
Scheduler

Int Core 0 Int Core 1

MPI Task 0 Shared
Components

MPI Task 1

One MPI Task on a Compute Unit

("Single Stream Mode")
• Only one integer unit is used per

compute unit

• This unit has exclusive access to the

256-bit FP unit and is capable of 8 FP

results per clock cycle

• The unit has twice the memory

capacity and memory bandwidth in this

mode

• The L2 cache is effectively twice as

large

• The peak of the chip is not reduced

• When to use

• Code is highly vectorized and makes

use of AVX instructions

• Code benefits from higher per task

memory size and bandwidth

Shared L2 Cache

Fetch

Decode

FP
Scheduler

1
2

8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2

8
-b

it
 F

M
A

C

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li

n
e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Integer
Scheduler

Integer

Scheduler

Integer

Core 0

Integer

Core 1

Idle
Components

Active
Components

One MPI Task per compute unit with Two

OpenMP Threads ("Dual-Stream Mode")
• An MPI task is pinned to a compute

unit

• OpenMP is used to run a thread on

each integer unit

• Each OpenMP thread has exclusive

access to an integer scheduler, integer

pipelines and L1 Dcache

• The 256-bit FP unit and the L2 Cache

is shared between the two threads

• 256-bit AVX instructions are

dynamically executed as two 128-bit

instructions if the 2nd FP unit is busy

• When to use

• Code needs a large amount of memory

per MPI rank

• Code has OpenMP parallelism at each

MPI rank

OpenMP
Thread 1

Shared L2 Cache

Fetch

Decode

FP Scheduler

1
2
8
-b

it
 F

M
A

C

L1 DCache L1 DCache

1
2
8
-b

it
 F

M
A

C

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

P
ip

e
li
n

e

Int
Scheduler

Int

Scheduler

Int Core 0 Int Core 1

OpenMP
Thread 0

Shared
Components

Running in Dual or Single-Stream modes

• Dual-Stream mode is the current default mode. General use does not require any options. CPU

affinity is set automatically by ALPS.

• Single-Stream mode is specified through the -j aprun option. Specifying -j 1 tells aprun to place 1

process or thread on each compute unit.

• When OpenMP threads are used, the -d option must be used to specify how many threads will be

spawned per MPI process. See the aprun(1) man page for more details. The aprun –N option may

be used to specify the number of MPI processes to assign per compute node or -S to specify the

number of processes per Interlagos die. Also, the environment variable $OMP_NUM_THREADS

needs to be set to the correct number of threads per process.

• For example, the following spawns 4 MPI processes, each with 8 threads, using 1 thread per

compute unit.

• OMP_NUM_THREADS=8

• aprun -n 4 -d 8 -j 1 ./a.out

NUMA Considerations

• Each Interlagos processor has 2 NUMA memory domains, each with 4

Bulldozer Modules. Access to memory located in a remote NUMA domain is

slower than access to local memory.

• OpenMP performance is usually better when all threads in a process execute

in the same NUMA domain. For the Dual-Stream case, 8 CPUs share a

NUMA domain, while in Single-Stream mode 4 CPUs share a NUMA domain.

Using a larger number of OpenMP threads per MPI process than these

values may result in lower performance due to cross-domain memory access.

• When running 1 process with threads over the NUMA domains, it’s critical to

initialize (not just allocate) memory from the thread that will use it in order to

avoid NUMA side effects.

• PGAS languages (UPC & Coarray Fortran) fully

optimized and integrated into the compiler

• UPC 1.2 and Fortran 2008 coarray support

• No preprocessor involved

• Target the network appropriately

• Full debugger support with Allinea’s DDT

PGAS

Coarray Fortran (CAF)

• Coarray Fortran is a small set of extensions to

Fortran for Single Program Multiple Data (SPMD)

parallel programming

• included in the current standard (Fortran 2008).

• Cray Fortran: -h caf (on by default)

• Gfortran:

• -fcoarray=<keyword>

UPC

• An extension of C that supports a single shared,

partitioned global address space

• UPC is fully integrated into the Cray C compiler,

to enable:

• -h upc

Charm++

• Charm++ provides processor virtualization

• Object oriented C++ programming

• Migratable object-based dynamic load balancing

• Fault tolerance and many other features

• To build Charm++ on BW

• ./build charm+++ gni-crayxe

Setting Process Affinity – BW XE node

20 Presentation Title

• 32 integer cores

• 16 FPU’s

• 4 numa nodes

• 2 sockets

Setting Process Affinity – aprun options

Common aprun options are:

•-n: Number of processing elements PEs for the application

•-N: Number of PEs to place per node

•-S: Number of PEs to place per NUMA node.

•-d: Number of CPU cores required for each PE and its threads

•-cc: Binds PEs to CPU cores.

•-r: Number of CPU cores to be used for core specialization

•-j: Dual or single stream/integer cores to use for a PE

•-ss: Enables strict memory containment per NUMA node

21 Presentation Title

Setting Process Affinity – pure MPI code

Assume XE nodes are used in the following and

proper resources are allocated, then:

•``aprun -n 64’’ places 32 mpi processes on a XE node by

default;

•``aprun -n 64 -N 8’’ places 8 mpi processes on a XE node.

• ``aprun -n 64 -N 8 -S 2’’ places 8 mpi processes on a XE

node using 4 numa nodes with 2 mpi processes per numa;

22 Presentation Title

Setting Process Affinity – pure MPI code

Assume XE nodes are used in the following and again

proper resources are allocated. To precisely control the

placements, use -cc:

•``aprun -n 64 -N 8 -cc 0,1,8,9,16,17,24,25’’ specifies

actually where each of 8 mpi processes on a node will be

placed.

•``aprun -n 64 -N 8 -cc 0,4,8,12,16,20,24,28’’ specifies a

different placement compare to the above;

23 Presentation Title

Setting Process Affinity – MPI+openMP

Assume XE nodes are used in the following, then:

• ``aprun -n 64 -d 2’’ places 16 mpi processes on a XE node,

4 per numa along with their corresponding threads;

•``aprun -n 64 -N 8 -d 2’’ places 8 mpi processes on a XE

node using 2 numa nodes with 4 mpi processes per numa

together with their corresponding threads;

•``aprun -n 64 -N 8 -S 2 -d 2’’ places 8 mpi processes on a

XE node using 4 numa nodes with 2 mpi processes per

numa together with their threads;

24 Presentation Title

Setting Process Affinity – MPI+openMP

Assume XE nodes are used in the following, the -cc option

provides precise control on placements:

•``aprun -n 64 -cc 0,1:2,3:8,9:10,11:16,17:18,19:24,25:26,27 puts 8 mpi

processes on an XE node, with core 0,1 for 1st MPI process and its 2

threads; core 2,3 for 2nd MPI process and its 2 threads …

•``aprun -n 64 -cc 0,1:4,5:8,9:12,13:16,17:20,21:24,25:28,29 puts 8 mpi

processes on an XE node, with core 0,1 for 1st MPI process and its 2

threads; core 4,5 for 2nd MPI process and its 2 threads …

25 Presentation Title

Running Applications

• Job submission
• Prepare a bash script to run

• Submit the script with qsub

• Reservation options can also be put in the script as annotated comments

#! /bin/bash

#PBS ­l nodes=4
#PBS ­l walltime=0:01:00
#PBS ­N example_job

echo “Running a job on MOM node $(hostname)”

#! /bin/bash

echo “Running a job on MOM node $(hostname)”

$ qsub ­l nodes=4 ­l walltime=1:00:00 ­N example_job /path/to/script.pbs

Running Applications

• Interactive Jobs
• User is placed on a MOM node with a shell prompt
• No job script is necessary

$ qsub ­I ­X \
 ­l nodes=2:ppn=32 \
 ­l walltime=0:30:00 \
 ­N interactive_job

Running Applications

• MOM node
• Manager node that runs the job script (does not participate in MPI applications)
• Initiates parallel application launch using aprun

• aprun
• Used in your job script to run your application binary
• Used instead of mpirun
• Handles placement of processes

#! /bin/bash
#PBS ­l nodes=4:ppn=32:xe
#PBS ­l walltime=00:01:00
#PBS ­N example_job

echo “Running a job on MOM node $(hostname).”
echo “using the following compute nodes:”
aprun ­n 4 ­N 1 “$(which hostname)”

$ aprun [placement_options] /path/to/binary

Running Applications

• Common qsub
reservation options
• ­l nodes=N:ppn=P:xe
• ­l walltime=HH:MM:SS
• ­N JOB_NAME
• ­e STDERR_FILE
• ­o STDOUT_FILE
• ­j oe

• Common aprun
placement options
• ­n TOTAL_PE
• ­N PE_PER_NODE
• ­S PE_PER_NUMA_DOMAIN
• ­d THREADS_PER_PE
• ­r NUM_SPECIAL_CORES
• ­cc CPU_BINDING_LISTS

https://bluewaters.ncsa.illinois.edu/running-your-jobs

Running Applications

• Example 1 – OpenMP on a single XE node
#! /bin/bash
#PBS ­l nodes=1:ppn=32:xe
#PBS ­l walltime=1:00:00
#PBS ­N big_flops
#PBS ­j oe

cd “$PBS_O_WORKDIR”
export OMP_NUM_THREADS=32
aprun ­n 1 ­d “$OMP_NUM_THREADS” ./big_flops

Running Applications

• Example 2 – FLOP heavy MPI code
#! /bin/bash
#PBS ­l nodes=16:ppn=32:xe
#PBS ­l walltime=3:00:00
#PBS ­N bigger_flops
#PBS ­j oe

cd “$PBS_O_WORKDIR”
aprun ­n “$((16*16))” ­N 16 ­d 2 ./bigger_flops

Running Applications

• Example 3 – FLOP heavy MPI/OpenMP code
#! /bin/bash
#PBS ­l nodes=64:ppn=32:xe
#PBS ­l walltime=1:00:00
#PBS ­N even_bigger_flops
#PBS ­j oe

cd “$PBS_O_WORKDIR”
export OMP_NUM_THREADS=16
CPU_LIST=”0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30”
CPU_LIST=”$(seq ­s , 0 2 31)” # SHORTCUT
aprun ­n 64 ­N 1 \

 ­d “$OMP_NUM_THREADS” \
 ­cc “$CPU_LIST”

Running Applications

• SPMD Mode
• aprun feature for running different binaries with different options under a unified

communicator
• Option, binary sets are separated with a single colon

• There are limitations! See portal documentation for details.

#! /bin/bash
#PBS ­l nodes=8:ppn=32:xe+16:ppn=16:xk
#PBS ­l walltime=2:22:22
#PBS ­N mixed_flops
#PBS ­j oe

cd “$PBS_O_WORKDIR”
aprun ­n $((8*16)) ­N 16 ­d 2 ./xe_flops : \
 ­n $((16*8)) ­N 8 ­d 2 ./xk_flops

https://bluewaters.ncsa.illinois.edu/launching-mpmd-jobs
https://bluewaters.ncsa.illinois.edu/launching-mpmd-jobs

Running Applications

• Cluster Compatibility Mode
• For non-MPI applications that handle their own

multiprocessing
• Submit job with CCM reservation parameter

• Use ccmrun instead of aprun

• For interactive jobs, use ccmlogin
• See portal documentation for more information.

­l gres=ccm

$ module load ccm
$ ccmrun ./compatible_flops \
 ­­host­file=”$PBS_NODEFILE”

https://bluewaters.ncsa.illinois.edu/cluster-compatibility-mode
https://bluewaters.ncsa.illinois.edu/cluster-compatibility-mode

Blue Waters Debugging Tools

• DDT - Aparallel debugger from Allinea Software, can be used for

scalar, multi-threaded and large-scale parallel applications.

• APT - Abnormal Termination Processing from Cray, a utility for

debugging. If an application takes a system trap, ATP performs

analysis on the dying application.

• STAT - The Stack Trace Analysis Tool gathers and merges stack

traces from a parallel application’s processes. The tool produces call

graphs. STAT is also capable of gathering stack traces with more fine-

grained information, such as the program counter or the source file

and line number of each frame

26

Blue Waters Debugging Tool - DDT

How to use:

• Set up for x11 forwarding: ssh -Y bw.ncsa.illinois.edu

• Complile with the –g option: e.g. ftn -g test.f90 -o test

• Starting a DDT debugging section with one of the following:

 submit a job through DDT

 manually launch a program with DDT

 attach DDT to a running program

 start a debug session from inside an interactive job

• The first three begin by launching ddt using the commands:

 Module load ddt

 ddt

• Details to follow in the tools’ section

27

Blue Waters Debugging Tool - ATP

To use ATP for program abnormal terminations, do:

• Load atp module by ``module load atp’’

• Recomplie and link the code

• Modify job script as follows:

…

module add atp export ATP_ENABLED=1 # or setenv ATP_ENABLED 1

… aprun …

• Sumbit the job

• More details to follow in the tools’ section

28

Blue Waters Debugging Tool - STAT

How to use – See tools’ section for details

29

	job_submission.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

