Re-desighing Communication and Work
Distribution in Scientific Applications for
Extreme-scale Heterogeneous Systems

Project Team:

Karen Tomko (Pl), Ohio Supercomputer Center
Dhabeleswar K. Panda (Co-Pl), Ohio State University
Khaled Hamidouche, Ohio State University
Hari Subramoni, Ohio State University
Jithin Jose, Ohio State University
Raghunathan Raja Chandrasekar, Ohio State University
Rong Shi, Ohio State University
Akshay Venkatesh, Ohio State University
Jie Zhang, Ohio State University

Blue Waters Symposium - 2014

e
Drivers of Modern HPC System Architectures

(ntep
Xeopy
p/DCeggol_

)

Accelerators / Coprocessors
high compute density, high performance/watt

Multi-core Processors High Performance Interconnects
>1 TFlop DP on a chip

e Multi-core processors are ubiquitous
e Modern interconnects have high performance features such as RDMA and
support for collectives

e Accelerators/Coprocessors becoming common in high-end systems

e Pushing the envelope for Exascale computing

= .2 -
é —

FH Plﬁ’ |, [iy

-
N

-

Tianhe-2(1) Titan (2 Stampede (6) “Blue Waters -

Blue Waters Symposium - 2014

Challenges for Communication Runtimes

e Complex Architecture
— Within a node
e Accelerators connected via PCle,
e NUMA shared memory

— Interconnect feature and topology consideration

e Scaling

— Current algorithms developed and tested with 100s to 1000s of
processes

— few systems on which to run with 10,000s to 100,000s

Blue Waters Symposium - 2014 3

Parallel Programming Models Overview

D@ el e

I |
LO%ICE“ shared meniory
Shared Memory Memory LISy Memory Memory | || Memory |1 | Memory
| |
| |
Shared Memory Model Distributed Memory Model Partitioned Global Address Space (PGAS)
SHMEM, OpenMP MPI (Message Passing Interface) Global Arrays, UPC, OpenSHMEM,, ...

e Programming models provide abstract machine models

e Models can be mapped on different types of systems
— e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

e Many Core models
— OpenMP, OpenACC, CUDA

Blue Waters Symposium - 2014 4

Key Questions

e How do MPI collectives perform at extreme scales?

e How well do the CraySHMEM and UPC PGAS collective
communications scale?

e Can both the CPU and GPU resources be leveraged
effectively in a hybrid node system?

Blue Waters Symposium - 2014 5

MPI on Blue Waters

e Domain applications such weather forecasting, earthquake
simulations and many more have a real requirement for
large throughput capability

e MPI is the most dominant programming model for
distributed memory systems

e MPI jobs in order of 1K processes becoming common
e MPI jobs in order of 1M processes is the maximum

e Blue Waters is one of the first instances that can be used
to test performance of MPI jobs at a really large scale

Blue Waters Symposium - 2014 6

Blue Waters MPI Collective Performance

e Point-to-point operations and Collective operations
determine the performance of MPI programs

e Performance of point-to-point operations involve
— Efficient utilization of underlying interconnection hardware

— Design of high performance protocols

e Performance of collectives additionally involves
— Design of efficient algorithms

e We evaluate performance of common collectives such as:
— MPI_Bcast

— MPI_Reduce
— MPI_Allgather

Blue Waters Symposium - 2014

Performance of MPI_Bcast (64 — 512 Processes)

20 =G4 =128
=256 =512
15 B
(7] —
= 7))
= 2
210 5
g 5
f eee e s |
5 - S N S I E— —
0 T T T T T T T T T T 1
1 2 4 8 16 32 64 128 256 512 1K
Message Size (bytes)
3000
5500 =4 =l=128
@256 =e=512
E 2000
g 1500 —
2
58 1000 T
500
0 T T T T 1

128K 256K 512K 1M

Message Size (bytes)

64K

Blue Waters Symposium - 2014

140
120
100
80
60
40
20

=64 =l=128

“=256 =512

32K

4K 8K 16K

Message Size (bytes)

1K 2K

Latency is flat in the 1 byte — 32 byte
range and then starts climbing —

regardless of process count

Latency of broadcast more than doubles
in the short message range going from
128 processes to 256 processes which is

undesirable

Ul
o

I
o

Latency (us)

w
o

N
o
|

[EEN
o

w
o
o
o
|

Performance of MPI_Bcast (1K — 8K Processes)

=h=1K

=)7K
“=4K

1 2 4 8 16 32 64 128 256 512

Message Size (bytes)

==K =l=2K

el =g K

—

Latency (us

64K 128K 256K 512K
Message Size (bytes)

Blue Waters Symposium - 2014

1M

140
120
100
80
60
40
20

==1K

1K 2K 4K 8K 16K
Message Size (bytes)

For a process count over 1K, there is
spike in latency at the 256 byte
range where bandwidth available
starts getting stressed

Performance of MPI_Bcast (16K — 128K Processes)

140 1000
=t=16K =E=32K 900
120 200 =t=16K =M=32K
e
_ 100 04K 128K 200 64K ==128K
(7] —
3 (7]
> 80 -
3 60
s
40 - —
20
0 T T T T T T T T T 1
1 2 4 8 16 32 64 128 256 512
" Size (bytes) 1K 2K 4K 8K 16K 32K
essage oize es
& y Message Size (bytes)
6000
5000 - =*=16K —#-32K e Unlike the 64 — 8K process count there
T 4000 - 64K ===128K is variability — possible traffic effect
=
§ 3000 e The spike at 8K message range is
[)]
® 2000 indicative of algorithm selection
1000 problem
O T T T T 1

64K 128K 256K 512K 1M

Message Size (bytes)
Blue Waters Symposium - 2014 10

Performance of MPI_Reduce (64 — 512 Processes)

=64 =E=128

“=256 ==512

Latency (us)

1 2 4 8 16 32 64 128 256 512
Message Size (bytes)

4000 | etmps «B=128
256 =512

1K 2K 4K 8K 16K 32K 64K 128K256K
Message Size (bytes)

Blue Waters Symposium - 2014

Reduce latency is hardware accelerated
and regardless of process count the

latency is similar
There does seem to be a limitation with

hardware acceleration at 128K byte
range

11

Performance of MPI_Reduce (1K — 8K Processes)

> e Trends similar to smaller process
—p=1K ==K
4 count
@ 4K eeegK
=3
>
(8]
c
32 -
S
1
0 T T T T T T T T T 1
1 2 4 8 16 32 64 128 256 512
Message Size (bytes)
4000
3500 To—qk =2k
3000 L
(7] *
= 2500 K 8K

1K 2K 4K 8K 16K 32K 64K 128K 256K

Message Size (bytes)

Blue Waters Symposium - 2014 12

Performance of MPI_Reduce (16K — 128K Processes)

7
g | 16K =m=32K e Notable increase in latency for 128K
g processes in the short message range
3
> 4
e
o3 -
5
2
1
0 I I I I I I I I I 1
1 2 4 8 16 32 64 128 256 512
Message Size (bytes)
3500
3000 F
——16K -#-32K
- 2500 /
) —4—64K —128K

1K 2K 4K 8K 16K 32K 64K 128K 256K
Message Size (bytes)

Blue Waters Symposium - 2014 13

Scalability of MPI_Bcast and MPI_Reduce

MPI_Bcast Scalability e Scalability normalized to 64 process job

30
> case
< 25
® 20 e MPI_Reduce is highly scalable
® ——64 :
N 15 e MPI_Bcast is not as scalable
g 10 =-4K
5 5 (——— . e " sk
0 QIO OIOIOIQIOIOIOIOI

1 2 4 8 16 32 64 128256512 MPI_Reduce Scalability

Message Size (Bytes) . 2.5
E 1.5
g ~—64
=] m—— T T T Tl TV
£ —=-4K
0° 128K
0 | | T T T T T T T 1

1 2 4 8 16 32 64 128256512
Message Size (Bytes)

Blue Waters Symposium - 2014 14

Performance of MPI_Allgather (128K Processes)

128K-Process Allgather Latency

8 w=p=128K

1 2 4 8 16 32 64 128256512 1K 2K 4K
Message Size (Bytes)

e Allgather is equivalent to all processes performing broadcasts
e Bandwidth of the interconnection is tested

e Traditionally order of log (N) algorithms applicable to short message allgathers

e The above graph raises an alarm of latency growth for large scale dense
collectives

Blue Waters Symposium - 2014 15

Observations on MPI Collective Performance

e Performance of latency sensitive operations such as
Reduce is competitive in the operational range with

increasing scale

e Congestion effects, cross job traffic likely to play a role in
performance of collectives as job sizes get larger (as seen
in the 128K jobs)

e Performance of dense collectives like Allgather suffer from
bandwidth limitations =>

— Applications should perform such collectives in smaller
communicators or using non-blocking variant of the collectives

— Better algorithms need to be devised to overcome bandwidth
limitations

Blue Waters Symposium - 2014 16

Key Questions

e How do MPI collectives perform at extreme scales?

e How well do the CraySHMEM and UPC PGAS collective

communications scale?

e Can both the CPU and GPU resources be leveraged
effectively in a hybrid node system?

Blue Waters Symposium - 2014 17

PGAS (UPC/SHMEM) on Blue Waters

e Partitioned Global Address Space (PGAS) programming
models getting more traction

— Shared memory abstraction over distributed nodes

— Global view of data and one-sided communication calls

— Provides improved productivity

— Can express irregular communication patterns easily

e Unified Parallel C (UPC) — a language based PGAS model
e SHMEM —a library based model

e Blue Waters provides a good platform to evaluate
performance of UPC/SHMEM jobs at scale

Blue Waters Symposium - 2014 18

Blue Waters UPC Performance Evaluations

e Point-to-point operations and Collective operations
determine the performance of UPC programs

e Used Cray UPC and OSU UPC Microbenchmarks for
evaluations

e Performance of point-to-point operations involve
— upc_memput
— upc_memget

e Performance of collectives additionally involves
— upc_barrier
— upc_broadcast
— upc_reduce

Blue Waters Symposium - 2014 19

UPC Put/Get Performance

12

8
UPC Memput Latency S mtrggccdgllemget Latency /'
10
=#=Intra-node , 6 | <E=inter-node
p— 8 —
El =l=|nter-node / 3 >
v 6 v 4
E e E
=y, 3
2 -
2 1
0 | 0 - 1

- N < 00 O NS 0O N X ¥
I N O N N d «— N
— &N un

Message Size Message Size

- N < 00 O N < 00 O N ¥ ¥
= N O NN «+ «— N
— N N

4K
8K
16K
32K

e Latency is flatin the 1 byte — 512 byte range and then starts climbing
— Latency for UPC Put (intra/inter) for 4 byte message: 0.13/2.34 us
— Latency for UPC Get (intra/inter) for 4 byte message: 0.07/1.17 us

e Higher costs for Put operation might be because of the extra synchronization
operation (upc_fence) for ensuring completion

Blue Waters Symposium - 2014 20

UPC Barrier Performance

Latency 12
10

180
160
140
120
100
80
60 :
40
20
0 - - . . . 0

1024 2048 8192 32768
System Size (# of Processes)

Normalized to Latency at 1K
(@)}

Scalability 2
1024 2048 8192 32768

e Barrier Operation Latency at 32,768 process — 186us

System Size (# of Processes)

e Scalability graph shows the latency normalized to that at 1,024 processes

e Linear scalability observed for smaller system sizes

Blue Waters Symposium - 2014

21

UPC Broadcast Performance

40000

Latency Scalability
35000 =4=2K Processes « 60 - Processe
(o]
30000 ® «B=3K Processes
= 50
A o =16 KProcesses
- 25000 16 KProcesses §
2 =>=37K Processes i 540 - PTOCESSE
o 20000 o
E -
= g 30
15000 N
© ; A N\
10000 £ 20 v \ /
o A
; <10 - RN L a 7=
5000 A.M— ‘,A‘AA. A/ B A
0 | A) ¢ eWeB oo eeWBTes0e.
1 4 16 64 256 1K 4K 16K 64K 256K 1 4 16 64 256 1K 4K 16K 64K 256K
Message Size Message Size

e Broadcast Latency for a 4byte message at 32,768 processes — 13us

e Variation in latencies observed after 8192 processes, and the variation increases with
scale

e Broadcast latency does not scale linearly with increase in system size

Blue Waters Symposium - 2014 22

Time (us)

UPC Reduce Performance

6000 25

Latency Scalability

5000 a=$=)K Processes ﬁ - =9=7K Processes
=@=8K Processes :. =@=8K Processes
4000 e
“=16K Processes %
—
3000 =>@=372K Processes S
g
2000 =
£
1000 - 3

O . I I I I I I I I I I I
1 4 16 64 256 1K 4K 16K 64K 256K 1 4 16 64 256 1K 4K 16K 64K 256K

Message Size Message Size

e Reduce Latency for 4 byte message at 32,768 processes — 5.4us
e Linear scalability observed for small message range

e Variation in operation latency observed as the system size increases

Blue Waters Symposium - 2014 23

Blue Waters CraySHMEM Performance Evaluations

e Point-to-point operations and Collective operations
determine the performance of SHMEM programs

e Used CraySHMEM library and OSU OpenSHMEM
Microbenchmarks for evaluations

e Performance of point-to-point operations involve

— shmem_put

— shmem_get

e Performance of collectives additionally involves
— shmem_barrier
— shmem_broadcast
— shmem_reduce

— shmem_collect

Blue Waters Symposium - 2014 24

Time (us)

CraySHMEM Put/Get Performance

) SHMEM Put Latency 60 SHMEM Get Latency

8 =#=Intra-Node r 50 - =*=Intra-Node

7

6 «@=|nter-Node I =@=|nter-Node r
5

4

3

2

1

0

= AN < 0 O AN 0 O N ¥ ¥ ¥ Y ¥ v
TN O NN o 4 N < 00 O N
— &N N — o

- N < 00 O N < 0 O N ¥ ¥ ¥ ¥
N O N N = o N < o0
- AN un

16K
32K

Message Size Message Size

e Latency isflatin the 1 byte — 512 byte range and then starts climbing after 1K bytes

— Latency for 4byte Put operation (intra/inter) —0.12/1.04 us
— Latency for 4byte Get operation (intra/inter) — 0.05/1.41 us

e Significantly higher latency observed for get operation, with increase in message size

— Get Latency for 512K message — 763 us

Blue Waters Symposium - 2014 25

CraySHMEM Barrier Performance

D

Latency > Scalability
140 < 4 /
®35
120 > /
€ 3
< 100 o /
=) 825
o 80 o
T 60 N 15
40 Té 1 ‘4‘_//
20 - 2 0.5
0 - 0 T T 1
2048 4096 16384 2048 4096 16384
System Size (# of Processes) System Size (# of Processes)

Barrier Latency at 16,384 processes — 138.64 us
Similar latencies as that of UPC barrier

Shows good scalability trends with increase in system size

Blue Waters Symposium - 2014

26

CraySHMEM Broadcast Performance

1400 Latency 3.5 Scalability -o-zK Processes
1200 | =#=2K Processes & 3
‘i / #=8K Processes
1000 - g 2. =»=16K Processes
—_ Q
3’ 300 18K Processes E 2
L) (o]
£ =>=16K Processes b
= 600 § 1.5 n
N A a - a
400 s 1 =g Vet g-o#‘:'h.-w -
200 205
A
0 _FALF'AH_'%;'A-T_'A‘:,*AT—TA‘_T'AT_A‘—,@TQ,‘-, —_— 0 S e B e B B S E B R E— R — —]
4 16 64 256 1K 4K 16K 64K 256K *”ﬁgﬁgﬁﬁﬁﬁﬁééﬁééé

Message Size .
Message Size

e Latency isflatin the 1 byte — 512 byte range and then starts climbing — regardless of

process count
e Broadcast Latency for 4-byte message at 16,384 processes — 72.3us

e Variation in latencies observed with increase in system size

Blue Waters Symposium - 2014 27

—

Time (us

CraySHMEM Reduce Performance

160000

=
o

Latency Scalability

140000 “#=2K Processes < ? ~¥2KProcesses
120000 - g j \ <#=4K Processes
100000 rocesses § 6 \ #=8K Processes
80000 - ij 5
60000 % 4
40000 i
20000 g i

0 B 0

4 16 64 256 1K 4K 16K 64K 256K
Message Size

Message Size

e Latency for 4-byte message at 16K processes — 210 us

e Scalability analysis shows good scalability trends with even higher system sizes as well

e Latencies smaller compared to UPC reduce operation — extra synchronization
operations in UPC collective operations

Blue Waters Symposium - 2014 28

CraySHMEM Collect Performance

w
o

30000 Latency Scalability =K Processes
e
25000 ...iE Erocesses . ﬁ 75 =l=AK Processes
o Processes i T ® 4+=8K Processes
e rocesses >
20000 — 9 =xé»16K Processes
'g =>&=16K Processes § 20 \ /\
- < A A
v 15000 2 15 =
£ f -‘3 ,\-_; a A x h Y
(V]
10000 LT A
£ -
5000 2 5
A
O h O T T T T T T T T T T T T T 1
sl A gD 4 8 16 32 64128256512 1K 2K 4K 8K 16K32K
Message Size Message Size

e Latency for 4byte collect (all-gather) operation at 16K processes —319.3 ms

e Scalability analysis shows collect operation scales well

Blue Waters Symposium - 2014 29

Key Questions

e How do MPI collectives perform at extreme scales?

e How well do the CraySHMEM and UPC PGAS collective
communications scale?

e Can both the CPU and GPU resources be leveraged
effectively in a hybrid node system?

Blue Waters Symposium - 2014 30

Current Execution of HPL on Heterogeneous GPU Clusters
e HPL (High Performance Linpack)

Benchmark for ranking supercomputers in the top500 list

e Current HPL support for GPU Clusters
— Heterogeneity inside a node CPU+GPU
— Homogeneity across nodes

e Current HPL execution on heterogeneous GPU Clusters
— Only CPU nodes (using all the CPU cores)
— Only GPU nodes (using CPU+GPU on only GPU nodes)
— As the ratio CPU/GPU is higher => report the “Only CPU” runs

e Hybrid HPL support for heterogeneous systems
— Heterogeneity inside a node (CPU+GPU)

— Heterogeneity across nodes (nodes w/o GPUs)

R. Shi, S. Potluri, K. Hamidouche, X. Lu, K. Tomko and D. K. Panda, A Scalable and Portable Approach to Accelerate
Hybrid HPL on Heterogeneous CPU-GPU Clusters, IEEE Cluster (Cluster '13), Best Student Paper Award

Blue Waters Symposium - 2014 31

Two Level Workload Partitioning: Inter-node

Original Partitioning MPI Process-scaling based Partitioning
et e[Ja| Ja

* Inter-node Static Partitioning

Original design: uniform distribution, bottleneck on CPU nodes

New design: identical block size, schedules more MPI processes on GPU nodes

MPI_GPU = ACTUAL_PEAK_GPU / ACTUAL_PEAK_CPU +
(NUM_CPU_CORES mod MPI_GPU=0)
Evenly split the cores

Blue Waters Symposium - 2014 32

U
Two Level Workload Partitioning: Intra-node

Bl BZ
A C, c,
E—><—>

GPU_LEN CPU_LEN

* Intra-node Dynamic Partitioning
* MPI-to-Device Mapping
Original design: 1:1
New design: M: N (M > N), N= number of GPUs/Node, M= number of MPI processes

* Initial Split Ratio Tuning: alpha = GPU_LEN / (GPU_LEN + CPU_LEN)
Fewer CPU cores per MPI processes

Overhead caused by scheduling multiple MPI processes on GPU nodes

Blue Waters Symposium - 2014 33

Performance Tuning of Single CPU Node and GPU Node

Netlib-CPU: Standard HPL version from Netlib (UTK)
Hybrid-CPU: Hybrid HPL version with OpenMP support
NVIDIA-GPU: NVIDIA’s HPL version

* OpenBLAS Math Library is used

Peak Performance Scaling on Single CPU/GPU Node

=#=Netlib-CPU =#=Hybrid-CPU =#=NVIDIA-GPU

O T T T T T T T T 1
10000 20000 30000 35000 40000 45000 50000 55000 60000

Problem Size N

Blue Waters Symposium - 2014 34

Peak Performance Scaling of Pure CPU/GPU Nodes

Measure the peak performance of either pure CPU Nodes or pure GPU
Nodes (1, 2, 4, 8, 16)

Performance Scaling of Pure CPU/GPU Nodes

“®=Netlib-CPU =#=Hybrid-CPU “#=NVIDIA-GPU

7000
’g 6000
& 5000
3 4000
& 3000
S 2000
£ 1000

Number of CPU/GPU Nodes

Blue Waters Symposium - 2014 35

Strong and Weak Scalability of Hybrid CPU+GPU Nodes

Using Hybrid-HPL to measure the scalability with 4 GPU Nodes + (4, 8, 12,
16) CPU Nodes

Launch 1 MPI process / CPU node; 1, 2 or 4 MPI processes / GPU node

Strong Scalability: fixed problem size N for each combination of CPUs+GPUs

(e.g. N=100,000 for 4 GPUs + 4 CPUs)

Weak Scalability: fixed memory usage (~40%) on GPU nodes for all cases

Strong Scalability Weak Scalability

=@=1 MPI/GPU =®=2 MPI|/GPU 4 MPI/GPU «@=1 MPI/GPU =®=2 MP|/GPU 4 MPI/GPU

— 4000 — 5000

8 3500 8

o o

E 3000 54000

§ 2500 § 3000

@ 2000 ©

£ € 2000 -

S 1500 S

g 1000 & 1000

~ 500 X

O ©

nd-) 0 T T T l nq_" 0 T T T l
4 8 12 16 4 8 12 16

Number of CPU Nodes Number of CPU Nodes

Blue Waters Symposium - 2014 36

Peak Performance of Hybrid CPU Nodes + GPU Nodes

Measure the peak performance of 64 CPU Nodes and 16 GPU Nodes
Launch 1 MPI process / CPU node, and 4 MPI processes / GPU node

Node Configuration Peak Performance (Gflops)
16 GPUs 6,480
64 CPUs 13,210

16 GPUs + 64 CPUs 14,520

Peak Performance Efficiency (Hybrid-HPL)
Peak Perf. of hybrid Nodes / (Peak Perf. of CPUs + Peak Perf. of GPUs)
(e.g. 14,520/ (6,480 + 13,210) = 73.7 %

Blue Waters Symposium - 2014 37

Conclusion

e The Blue Waters system provides unique opportunities

— Communications at large scale
— Hybrid system with XE6 and XK7 nodes
e MPI collectives study on up to 128K processes
— Latency sensitive collectives such as reduce perform well
— Bandwidth limitations impact dense collectives such as Allgather
e UPCand SHMEM communications study up 32K and 16K
cores respectively

— UPC and SHMEM point-to-point performance is good

— Some collectives (UPC Scatter, SHMEM Broadcast) scale well, for
others (SHMEM collect) we observed high latencies

Blue Waters Symposium - 2014

38

Conclusion (continued)

e Hybrid HPL
— Peak single CPU node performance 202 Gflops/sec
— Peak GPU node performance 670 Gflops/sec

— Performance efficiency of hybrid HPL compared to the sum of pure
CPU and GPU nodes, above 70% efficiency with 16 GPU nodes and

64 CPU nodes.

e (Contact US:

Karen Tomko Dhabaleswar K. (DK) Panda
Ohio Supercomputer Center The Ohio State University
E-mail: ktomko@osc.edu E-mail: panda@cse.ohio-state.edu
http://www.osc.edu/~ktomko http://www.cse.ohio-state.edu/~panda

Blue Waters Symposium - 2014 39

