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e
Drivers of Modern HPC System Architectures
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Multi-core Processors High Performance Interconnects
>1 TFlop DP on a chip

e Multi-core processors are ubiquitous
e Modern interconnects have high performance features such as RDMA and
support for collectives

e Accelerators/Coprocessors becoming common in high-end systems

e Pushing the envelope for Exascale computing
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Challenges for Communication Runtimes

e Complex Architecture
— Within a node
e Accelerators connected via PCle,
e NUMA shared memory

— Interconnect feature and topology consideration

e Scaling

— Current algorithms developed and tested with 100s to 1000s of
processes

— few systems on which to run with 10,000s to 100,000s
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Parallel Programming Models Overview
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e Programming models provide abstract machine models

e Models can be mapped on different types of systems
— e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

e Many Core models
— OpenMP, OpenACC, CUDA
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Key Questions

e How do MPI collectives perform at extreme scales?

e How well do the CraySHMEM and UPC PGAS collective
communications scale?

e Can both the CPU and GPU resources be leveraged
effectively in a hybrid node system?
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MPI on Blue Waters

e Domain applications such weather forecasting, earthquake
simulations and many more have a real requirement for
large throughput capability

e MPI is the most dominant programming model for
distributed memory systems

e MPI jobs in order of 1K processes becoming common
e MPI jobs in order of 1M processes is the maximum

e Blue Waters is one of the first instances that can be used
to test performance of MPI jobs at a really large scale
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Blue Waters MPI Collective Performance

e Point-to-point operations and Collective operations
determine the performance of MPI programs

e Performance of point-to-point operations involve
— Efficient utilization of underlying interconnection hardware

— Design of high performance protocols

e Performance of collectives additionally involves
— Design of efficient algorithms

e We evaluate performance of common collectives such as:
— MPI_Bcast

— MPI_Reduce
— MPI_Allgather
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Performance of MPI_Bcast (64 — 512 Processes)
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Latency is flat in the 1 byte — 32 byte
range and then starts climbing —

regardless of process count

Latency of broadcast more than doubles
in the short message range going from
128 processes to 256 processes which is

undesirable
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Performance of MPI_Bcast (1K — 8K Processes)
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For a process count over 1K, there is
spike in latency at the 256 byte
range where bandwidth available
starts getting stressed



Performance of MPI_Bcast (16K — 128K Processes)
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Performance of MPI_Reduce (64 — 512 Processes)
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Reduce latency is hardware accelerated
and regardless of process count the

latency is similar
There does seem to be a limitation with

hardware acceleration at 128K byte
range
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Performance of MPI_Reduce (1K — 8K Processes)
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Performance of MPI_Reduce (16K — 128K Processes)
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Scalability of MPI_Bcast and MPI_Reduce

MPI_Bcast Scalability e Scalability normalized to 64 process job
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Performance of MPI_Allgather (128K Processes)

128K-Process Allgather Latency
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e Allgather is equivalent to all processes performing broadcasts
e Bandwidth of the interconnection is tested

e Traditionally order of log (N) algorithms applicable to short message allgathers

e The above graph raises an alarm of latency growth for large scale dense
collectives
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Observations on MPI Collective Performance

e Performance of latency sensitive operations such as
Reduce is competitive in the operational range with

increasing scale

e Congestion effects, cross job traffic likely to play a role in
performance of collectives as job sizes get larger (as seen
in the 128K jobs)

e Performance of dense collectives like Allgather suffer from
bandwidth limitations =>

— Applications should perform such collectives in smaller
communicators or using non-blocking variant of the collectives

— Better algorithms need to be devised to overcome bandwidth
limitations
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Key Questions

e How do MPI collectives perform at extreme scales?

e How well do the CraySHMEM and UPC PGAS collective

communications scale?

e Can both the CPU and GPU resources be leveraged
effectively in a hybrid node system?
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PGAS (UPC/SHMEM) on Blue Waters

e Partitioned Global Address Space (PGAS) programming
models getting more traction

— Shared memory abstraction over distributed nodes

— Global view of data and one-sided communication calls

— Provides improved productivity

— Can express irregular communication patterns easily

e Unified Parallel C (UPC) — a language based PGAS model
e SHMEM —a library based model

e Blue Waters provides a good platform to evaluate
performance of UPC/SHMEM jobs at scale
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Blue Waters UPC Performance Evaluations

e Point-to-point operations and Collective operations
determine the performance of UPC programs

e Used Cray UPC and OSU UPC Microbenchmarks for
evaluations

e Performance of point-to-point operations involve
— upc_memput
— upc_memget

e Performance of collectives additionally involves
— upc_barrier
— upc_broadcast
— upc_reduce
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UPC Put/Get Performance
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e Latency is flatin the 1 byte — 512 byte range and then starts climbing
— Latency for UPC Put (intra/inter) for 4 byte message: 0.13/2.34 us
— Latency for UPC Get (intra/inter) for 4 byte message: 0.07/1.17 us

e Higher costs for Put operation might be because of the extra synchronization
operation (upc_fence) for ensuring completion
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UPC Barrier Performance
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e Barrier Operation Latency at 32,768 process — 186us

System Size (# of Processes)

e Scalability graph shows the latency normalized to that at 1,024 processes

e Linear scalability observed for smaller system sizes
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UPC Broadcast Performance
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e Broadcast Latency for a 4byte message at 32,768 processes — 13us

e Variation in latencies observed after 8192 processes, and the variation increases with
scale

e Broadcast latency does not scale linearly with increase in system size
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UPC Reduce Performance
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e Reduce Latency for 4 byte message at 32,768 processes — 5.4us
e Linear scalability observed for small message range

e Variation in operation latency observed as the system size increases
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Blue Waters CraySHMEM Performance Evaluations

e Point-to-point operations and Collective operations
determine the performance of SHMEM programs

e Used CraySHMEM library and OSU OpenSHMEM
Microbenchmarks for evaluations

e Performance of point-to-point operations involve

— shmem_put

— shmem_get

e Performance of collectives additionally involves
— shmem_barrier
— shmem_broadcast
— shmem_reduce

— shmem_collect
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CraySHMEM Put/Get Performance
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e Latency isflatin the 1 byte — 512 byte range and then starts climbing after 1K bytes

— Latency for 4byte Put operation (intra/inter) —0.12/1.04 us
— Latency for 4byte Get operation (intra/inter) — 0.05/1.41 us

e Significantly higher latency observed for get operation, with increase in message size

— Get Latency for 512K message — 763 us
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CraySHMEM Barrier Performance
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Barrier Latency at 16,384 processes — 138.64 us
Similar latencies as that of UPC barrier

Shows good scalability trends with increase in system size
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CraySHMEM Broadcast Performance
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e Latency isflatin the 1 byte — 512 byte range and then starts climbing — regardless of

process count
e Broadcast Latency for 4-byte message at 16,384 processes — 72.3us

e Variation in latencies observed with increase in system size
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CraySHMEM Reduce Performance
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e Latency for 4-byte message at 16K processes — 210 us

e Scalability analysis shows good scalability trends with even higher system sizes as well

e Latencies smaller compared to UPC reduce operation — extra synchronization
operations in UPC collective operations
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CraySHMEM Collect Performance
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e Latency for 4byte collect (all-gather) operation at 16K processes —319.3 ms

e Scalability analysis shows collect operation scales well
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Key Questions

e How do MPI collectives perform at extreme scales?

e How well do the CraySHMEM and UPC PGAS collective
communications scale?

e Can both the CPU and GPU resources be leveraged
effectively in a hybrid node system?

Blue Waters Symposium - 2014 30



Current Execution of HPL on Heterogeneous GPU Clusters
e HPL (High Performance Linpack)

Benchmark for ranking supercomputers in the top500 list

e Current HPL support for GPU Clusters
— Heterogeneity inside a node CPU+GPU
— Homogeneity across nodes

e Current HPL execution on heterogeneous GPU Clusters
— Only CPU nodes (using all the CPU cores)
— Only GPU nodes (using CPU+GPU on only GPU nodes)
— As the ratio CPU/GPU is higher => report the “Only CPU” runs

e Hybrid HPL support for heterogeneous systems
— Heterogeneity inside a node (CPU+GPU)

— Heterogeneity across nodes (nodes w/o GPUs)

R. Shi, S. Potluri, K. Hamidouche, X. Lu, K. Tomko and D. K. Panda, A Scalable and Portable Approach to Accelerate
Hybrid HPL on Heterogeneous CPU-GPU Clusters, IEEE Cluster (Cluster '13), Best Student Paper Award
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Two Level Workload Partitioning: Inter-node

Original Partitioning MPI Process-scaling based Partitioning
et e[ Ja| Ja

* Inter-node Static Partitioning

Original design: uniform distribution, bottleneck on CPU nodes

New design: identical block size, schedules more MPI processes on GPU nodes

MPI_GPU = ACTUAL_PEAK_GPU / ACTUAL_PEAK_CPU +
(NUM_CPU_CORES mod MPI_GPU=0)
Evenly split the cores
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U
Two Level Workload Partitioning: Intra-node
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* Intra-node Dynamic Partitioning
* MPI-to-Device Mapping
Original design: 1:1
New design: M: N (M > N), N= number of GPUs/Node, M= number of MPI processes

* Initial Split Ratio Tuning: alpha = GPU_LEN / (GPU_LEN + CPU_LEN)
Fewer CPU cores per MPI processes

Overhead caused by scheduling multiple MPI processes on GPU nodes
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Performance Tuning of Single CPU Node and GPU Node

Netlib-CPU: Standard HPL version from Netlib (UTK)
Hybrid-CPU: Hybrid HPL version with OpenMP support
NVIDIA-GPU: NVIDIA’s HPL version

* OpenBLAS Math Library is used

Peak Performance Scaling on Single CPU/GPU Node
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Peak Performance Scaling of Pure CPU/GPU Nodes

Measure the peak performance of either pure CPU Nodes or pure GPU
Nodes (1, 2, 4, 8, 16)

Performance Scaling of Pure CPU/GPU Nodes
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Strong and Weak Scalability of Hybrid CPU+GPU Nodes

Using Hybrid-HPL to measure the scalability with 4 GPU Nodes + (4, 8, 12,
16) CPU Nodes

Launch 1 MPI process / CPU node; 1, 2 or 4 MPI processes / GPU node

Strong Scalability: fixed problem size N for each combination of CPUs+GPUs

(e.g. N=100,000 for 4 GPUs + 4 CPUs)

Weak Scalability: fixed memory usage (~40%) on GPU nodes for all cases

Strong Scalability Weak Scalability
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Peak Performance of Hybrid CPU Nodes + GPU Nodes

Measure the peak performance of 64 CPU Nodes and 16 GPU Nodes
Launch 1 MPI process / CPU node, and 4 MPI processes / GPU node

Node Configuration Peak Performance (Gflops)
16 GPUs 6,480
64 CPUs 13,210

16 GPUs + 64 CPUs 14,520

Peak Performance Efficiency (Hybrid-HPL)
Peak Perf. of hybrid Nodes / (Peak Perf. of CPUs + Peak Perf. of GPUs)
(e.g. 14,520/ (6,480 + 13,210) = 73.7 %
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Conclusion

e The Blue Waters system provides unique opportunities

— Communications at large scale
— Hybrid system with XE6 and XK7 nodes
e MPI collectives study on up to 128K processes
— Latency sensitive collectives such as reduce perform well
— Bandwidth limitations impact dense collectives such as Allgather
e UPCand SHMEM communications study up 32K and 16K
cores respectively

— UPC and SHMEM point-to-point performance is good

— Some collectives (UPC Scatter, SHMEM Broadcast) scale well, for
others (SHMEM collect) we observed high latencies
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Conclusion (continued)

e Hybrid HPL
— Peak single CPU node performance 202 Gflops/sec
— Peak GPU node performance 670 Gflops/sec

— Performance efficiency of hybrid HPL compared to the sum of pure
CPU and GPU nodes, above 70% efficiency with 16 GPU nodes and

64 CPU nodes.
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