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Question: what do the following have in common?

Answer: their properties can be described by the solution of an interacting quantum mechanical problem.
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Why quantum Monte Carlo?
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Density Functional Theory

Energy «——— Electron density

E0=E[no]

Hohenberg & Kohn, 1964
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Walter Kohn (left),
receiving the Nobel
prize in chemistry
in 1998.

Quantum Monte Carlo

Statistical Approach to Solving the
Interacting, Many Body Problem
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some examples from our work
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Magnetic
susceptibility

Monoclinic
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m No spins: structural transition would happen, but no MIT

m No structure: possible low-temperature FM ordering, but
no MIT

m The MIT is a cooperative transition; the Goodenough
Magnetism model was good enough (... almost)

Energy

Zheng, Wagner (submitted 2014)
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m accurate prediction of point defect properties — especially thermal and
optical ionization energies — would be very useful for point defect
engineering

m but defect properties have proven challenging to model via first principles,
e.g. band gap problem

m question of historical significance:
can N doping lead to p-type )

conductivity in zinc oxide? S
m QMC : quantitative agreement Q2=
with most recent experimental 2 @
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2010. conversion efficiency : ~11%
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Appl. Phys. Lett. 2013.
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CZTS/CZTSe: relatively new
thin-film photovoltaic
converter

Despite rapid early progress,
recently performance
improvements have
flattened out

Challenge: identify the
defect or defect cluster that
is responsible for the low
open-circuit voltages in
devices

®  Cugzy Zngy, or [Cuz+Vy,|

QMC results give
quantitative calculations of
band gap, defect
calculations underway

Elif Ertekin
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m Cr, dissociation:
landmark example of an
interacting electron
system

m Best quantum chemistry
methods fall short in
capturing the physics,
which includes:

® sextuple bond
® structural sensitivity

® antiferromagnetic
correlations

® shoulder

m Near exact calculation on
BW using AFQMC is the
most accurate theoretical
result to date

Purwanto, Zhang, Krakauer, in prep 2014
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application to diamond and zinc oxide

m Accurate excited states is a
notorious problem for
conventional electronic
structure methods

m AFQMC methodology
developed; benchmarked
on two materials:
diamond carbon and
wurtzite zinc oxide

® Preliminary assessment:
quantitative agreement
with experiment

Ma, Zhang, Krakauer, New J. of Phys (2013).

Energy (eV)

Band structure of diamond
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method Band gap (eV)

GGA 0.77

LDA+U 1.0

Hybrid functionals [3.3; 2.9

GW 24,28,2.6

AFQMC 3.26(16)

experiment 3.3-3.57
Shiwei Zhang



m Thanks to Blue Waters, we have been able to choose ambitious problems in
many-body interacting electron systems.

m hydrogen under pressure: unveiling the states of matter at the interior of
Jupiter

® understanding magnetism-doping-phonon relationships in high T
superconductors

® magnesium oxide under pressure: what is the thermal conductivity of the
earth’s crust?

m getting rid of unwelcome defects - polarons and DX centers - in thin-film
photovoltaic materials

m continued efforts at methodology development (AFQMC), esp. for excited
states in solids
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