
Accelerating Computations of Turbulence

on Blue Waters (at/beyond the Petascale)

P. K. Yeung (Georgia Tech, PI)
D. Pekurovsky (SDSC-UCSD)

pk.yeung@ae.gatech.edu

NEIS-P2 Blue Waters Symposium
NCSA, Urbana-Champaign, May 2013

Thanks...
NSF: PRAC and Fluid Dynamics Programs

BW & Cray staff: G. Bauer, T. Cortese, R. Fiedler, J. Kim, J. Li
D. Buaria, K. Iyer (GT); A. Majumdar (SDSC-UCSD)

Yeung PRAC, BW Users Group, SC’10 – p.1/22

Overview

Turbulence: in short, why do we need Blue Waters

Numerical methods and domain decomposition

Performance factors and code development approach

Subaward: new programming models for improvement

MPI-OpenMP (multithreading)

Co-Array Fortran (remote memory addressing)

Q: Can we overlap computation with communication?
Discussion of performance data and current prospects

Large-volume I/O and data archival

Concluding remarks

Yeung PRAC, BW Users Group, SC’10 – p.2/22

Why Study Turbulence?

It is everywhere, studied in many disciplines

Space Shuttle

It is challenging: unsteady, 3D, stochastic, wide range of scales

It holds the key to improved engineering devices and
prediction/management of natural phenomena

Yeung PRAC, BW Users Group, SC’10 – p.3/22

Numerical Approach

Navier-Stokes: conservation of mass (∇ · u = 0) and momentum:

∂u/∂t + u · ∇u = −∇(p/ρ) + ν∇2
u

In Fourier-space,u(x) =
∑

k
û(k) exp(ik · x), with k · û = 0:

(∂/∂t + νk2)û = −{û · ∇u}⊥k

Explicit time stepping, viscous term by integrating factor

û · ∇u by convolution integral is impossible (Ops.∝ N6)

Fourier pseudo-spectral (beware aliasing errors):

forward and backward transforms, every time step

3D FFT requirements (Ops.∝ N3 ln2 N) drive the coding

Yeung PRAC, BW Users Group, SC’10 – p.4/22

2D Domain Decomposition

Partition a cube along two directions, into “pencils” of data

PENCIL

Up toN2 cores forN3 grid

MPI: 2-D processor grid,

iproc(rows) × jproc(cols)

3D FFT from physical space to

wavenumber space:

(Starting with pencils inx)

Transform inx

Transpose to pencils inz

Transform inz

Transpose to pencils iny

Transform iny

Transposes by message-passing,

collective communication

Yeung PRAC, BW Users Group, SC’10 – p.5/22

PRAC Project Activities

Approx 10 person-trips to NCSA (workshops and meetings)

Use of BW Early Science System, May-June 2012

Involvement in Track 1 acceptance testing (122883 benchmark)

NEIS subaward from NCSA, 2012-2013

Revised resource allocation granted by NSF, over 3 years

Towards (first?)81923 DNS of turbulence on periodic domain,
with additional science requirements beyond velocity field

Yeung PRAC, BW Users Group, SC’10 – p.6/22

Factors Affecting Performance

Much more than the number of operations...

Domain decomposition: the “processor grid geometry”

Load balancing: are all CPU cores equally busy?

Software libraries, compiler optimizations

Computation: cache size and memory bandwidth, per core

Communication: bandwidth and latency, per MPI task

Memory copies due to non-contiguous messages

I/O: filesystem speed and capacity; control of traffic jams

Network topology of machine, environmental variables

Practice: job turnaround, scheduler policies, and CPU-hour economics

Yeung PRAC, BW Users Group, SC’10 – p.7/22

Benchmarking Protocols

User-coded profiling (MPI_WTIME)

Detailed breakdowns (major subroutines, or major classes of
operations) are crucial for understanding

Take max over all MPI tasks, and min over several steps

To filter out effects of variability (from network contention),
run different cases from same job (hence using same nodes)

FFT kernel used to evaluate new programming strategies

key building block in PSDNS, also relevant to many other
disciplines (open-source P3DFFT library, D. Pekurovsky)

specify a simple sinusoidal velocity field

transform to Fourier space, verify spectrum (single spike?)

transform back, max. error should beO(10−6) or smaller

Yeung PRAC, BW Users Group, SC’10 – p.8/22

Subaward Objectives

Top priority is improving communication performance:

Hybrid MPI-OpenMP (multithreading) and overlap

production DNS code is fully hybridized, but only master
threads make communication calls (while worker threads idle)

can we do better by overlapping communication by some
threads with computation by other threads

Co-Array Fortran and overlap

Alltoall by CAF (R.A. Fiedler) currently gives best
performance, extended to other operations in DNS

can we do better yet by overlapping say, alltoall for one
variable with computation for another variable

Yeung PRAC, BW Users Group, SC’10 – p.9/22

Production DNS Performance

2+Petaflop Cray XK6 (Jaguarpf at ORNL) in Summer 2012
(similar to XE nodes on Blue Waters)

40963 (circles) and81923 (triangles), 4th-order Runge-Kutta

10
4

10
5

10
1

10
2

cores # cores

© ©

CPU/step, MPI+OpenMP CPU/step, MPI+CAF

pure MPI, best processor grid, stride-1 arithmetic

dealiasing: can skip some (highk) modes in Fourier space

better scaling when scalars added (blue, more work/core)
Yeung PRAC, BW Users Group, SC’10 – p.10/22

Method 1: Hybrid MPI-OpenMP

Parallel regions, shared or private variables, work-sharing
constructs for computation

2 or 4 threads per MPI task (thread 0 is the master)

Three possible levels of thread safety

FUNNELED: only master thread makes MPI calls
(default, fully implemented in DNS code)

SERIALIZED: all threads can make MPI calls,
but 1 thread at a time (use ORDERED construct)

MULTIPLE: all threads can make MPI calls, no restrictions

Serialized and multiple: tested using FFT kernel only
Overlap: some threads compute while others communicate?

Usually slower than pure MPI at small problem sizes,
but more competitive for larger problem using more cores

Yeung PRAC, BW Users Group, SC’10 – p.11/22

Threads: serialized and multiple

Start with data in real-space, as pencils inx. Each thread will do:
(a) FFT inx; (b) Pack; (c) ALLTOALL; (d) Unpack

Serialized threads: a pipelined procedure

0 FFT inx Pack Alltoall Unpack
1 FFT inx Pack Alltoall Unpack
2 FFT inx Pack Alltoall Unpack

Thread 1 waits until Thread 0 completes ALLTOALL

Unpack on thread 0 concurrent with comm on thread 1

Thread 2 in turn waits on thread 1; and 3 waits for 2

Some penalty due to need for explicit synchronization

Multiple threads: all threads doing ALLTOALL independently.
no explicit synchronizaion, but message traffic is heavy

Yeung PRAC, BW Users Group, SC’10 – p.12/22

FFT Kernel Performance

Time taken per forward-backward FFT for 5 variables:
(On BW, take best data from several repeat trials)

N3 Cores Tasks_Threads CPU(secs, F/S/M)
20483 4096 16 × 128_2 3.65 / 3.03 / 2.99
20483 4096 8 × 128_4 5.20 / 4.27 / 3.74
40963 32768 16 × 1024_2 6.15 / 6.11 / 6.74
40963 32768 8 × 1024_4 6.75 / 6.58 / 7.40

For comparison, pure MPI for same number of cores gives
3.20 secs for20483 and 5.15 secs for40963

Relative merits of three modes (F/S/M) not clear, with significant
variability between successive trials

Because of NUMA considerations, > 4 threads usu. ineffective

Yeung PRAC, BW Users Group, SC’10 – p.13/22

Method 2: Co-Array Fortran

Use Cray compiler (craycce): “ftn -h caf”

Simple one-sided get operation for pairwise exchange, with
random pair ordering

In contrast to MPI_ALLTOALL, better to break messages into
smaller chunks (512 bytes seems optimum).

complex(b8) :: recvbuck(buffersize)[0:*]
recvbuck(....)=src(...)
des(....)=recvbuck(...)[i_co]
sync memory
call mpi_barrier

Declare major communication buffers as co-arrays: changes
limited to a small number of routines but some copying is needed

Needs huge memory pages (“module load craype-hugepages8M”
and “setenv XT_SYMMETRIC_HEAP_SIZE 200M”)

Yeung PRAC, BW Users Group, SC’10 – p.14/22

Co-Array Fortran: Overlap?

Coarse-grain overlap for multi-variable FFT: exchange messages for
one variable while computing another. Some challenges:

For efficient overlap, buffer size needs to be large
(hence try coarse-grain overlap instead of fine-grain)

Make sure that CAF exchanges data in non-blocking manner
(use!dir$ pgas defer_sync)

Use multiple threads: one thread handles communication
(including sync_memory) while others compute.

How to synchronize the threads?
master thread exchanges data and wait for completion; worker
threads to wait for signal from master. (use!$OMP ATOMIC
WRITE to manage a shared variable for this purpose)

Q: Is it faster? A: Not yet, but preliminary timings comparable

Yeung PRAC, BW Users Group, SC’10 – p.15/22

Pseudo-code on overlap algorithm

flag_send_complete(:) = 0 else
!$OMP BARRIER do j=1,nv
if (ithr==0) then ! Master thread do while (flag_send_complete(j) !=1)
sync memory !$OMP FLUSH
call mpi_barrier sleep
do j=1,nv end do
call CAF_alltoall (j) !exchange completed for j-th variable
sync memory !can proceed with computation
!$OMP ATOMIC write call compute (j)
flag_send_complete (j)=1 end do
end do end if

Yeung PRAC, BW Users Group, SC’10 – p.16/22

Performance variability

Substantial variability in timings on BW:

often large enough to obscure differences between different
code versions or programming models

factor of 2 not uncommon (sometimes greater):
precise estimation of resources required becomes difficult

Major cause is understood to be network contention

shows in routines that perform communication

affects communication-intensive codes the most

Possible solution, at systems level, is topology-aware scheduling:

encourage scheduler to assign nodes in close neighborhood

perhaps longer waiting time but leads to more efficient
utilization of resources overall

Yeung PRAC, BW Users Group, SC’10 – p.17/22

Present timings on BW

For our largest jobs (81923, 4096+XE nodes), usually helps if:

choose processor grid geometry such thatiproc × num_thr = 32
(then some of the communication occurs on node)

alltoall by CAF instead of MPI

1 thread, 16 MPI tasks/node (16 idle, more bandwidth/core)

requesting a few percent more nodes than necessary

favorable placement of nodes in 3D torus (most critical!)

Two jobs run with the same job script, 23 secs vs 54 secs/step:
taskid itransform realspace transform overall

0 0.249 8.694 0.390 12.24 1.32 22.89

0 0.249 22.35 0.394 29.70 1.68 54.11

Yeung PRAC, BW Users Group, SC’10 – p.18/22

I/O and Data Management

Reading and writing checkpoints: (currently 1 file per MPI task)

alleviate traffic jam by a relay scheme:
— at most 4096 MPI tasks doing I/O concurrently

organized into∼
√

numtasks sub-directories

set directories to stripe 1 BEFORE writing data

on reading data, open files in read-only mode

file containing info on data organization also written
(should be readable using different iproc or jproc)

conversion at input/output: overlap I/O with?

I/O performance on shared Lustre filesystems can be highly
variable, but seems very good on BW so far:

40 secs to write81923 single prec, velocity only (153 GB/s)

however reading takes longer (a concern for postprocessing)
Yeung PRAC, BW Users Group, SC’10 – p.19/22

I/O: Recent and Pending Changes

Number of files is a weakness of current protocol

opening and closing a file puts load on metaserver

data transfer more efficient if fewer files

But 1 file per simulation also cumbersome

Working towards 1 file per communicator, w/ relay

basic POSIX format or Parallel HDF5

Can we read/write less data?

sincek · û = 0 some velocity Fourier coefficients can be
recovered from others (implemented)

skip aliased modes: substantial reduction, but reading data with
different iproc/jproc would be difficult (will need some effort)

checkpoint less frequently, or keep fewer datasets (maybe)

Yeung PRAC, BW Users Group, SC’10 – p.20/22

Data Archival and Processing

Continuing for months or years:

retrieve the data from archival system (reliability)

re-analyze the data (as new questions, ideas come up...)

provide access to community (portability, formats)

Globus Online used (only way?) to copy data between BW scratch
disk and Nearline (HPSS) storage

1000 Mbit/sec (125 MB/sec) sometimes possible

transfer proceeds in background

However Globus Online does not provide sufficient functionality:

cannot move or list exact size of files in remote system

cannot verify file date, or change permissions

Yeung PRAC, BW Users Group, SC’10 – p.21/22

Concluding Remarks / Lessions Learned

Facing up to the challenges of communication-intensive codes

bandwidth and interconnect topology

variability due to sharing of resources

OpenMP and (especially) Co-Array Fortran are helpful

Pursuit of overlap between computation and communication in
FFT kernels has so far not generated breakthroughs

yet there are still ideas to try

“dedicated box” testing on BW eagerly awaited

With large resource allocation, and improvements to come:

Blue Waters will allow us to simulate and understand
turbulence in unmatched precision and detail, providing great
impetus for leading-edge HPC as well

Yeung PRAC, BW Users Group, SC’10 – p.22/22

	
	shadowbox {Overview}
	shadowbox {�f Large Why Study Turbulence?}
	shadowbox {Numerical Approach}
	shadowbox {2D Domain Decomposition}
	shadowbox {PRAC Project Activities}
	shadowbox {Factors Affecting Performance}
	shadowbox {Benchmarking Protocols}
	shadowbox {Subaward Objectives}
	shadowbox {Production DNS Performance}
	shadowbox {Method 1: Hybrid MPI-OpenMP}
	shadowbox {Threads: serialized and multiple}
	shadowbox {FFT Kernel Performance}
	shadowbox {Method 2: Co-Array Fortran}
	shadowbox {Co-Array Fortran: Overlap?}
	shadowbox {Pseudo-code on overlap algorithm}
	shadowbox {Performance variability}
	shadowbox {Present timings on BW}
	shadowbox {I/O and Data Management}
	shadowbox {I/O: Recent and Pending Changes}
	shadowbox {Data Archival and Processing}
	shadowbox {Concluding Remarks / Lessions Learned}

