
User Tools on Blue Waters

Manisha Gajbe + others

Cray Performance Tools

Topics

• Cray performance tools overview

• Steps to using the tools

• Performance measurement on the Cray XE system

• Using HW performance counters

• Profiling applications

• Visualization of performance data through pat_report

• Visualization of performance data through Cray

Apprentice2

• MPICH Rank Order

Design Goals
Assist the user with application performance analysis
and optimization

• Help user identify important and meaningful

information from potentially massive data sets

• Help user identify problem areas instead of just

reporting data

• Bring optimization knowledge to a wider set of users

Design Goals
Focus on ease of use and intuitive user interfaces

• Automatic program instrumentation
• Automatic analysis

Target scalability issues in all areas of tool
development

• Data management
• Storage, movement, presentation

Strengths
solution from instrumentation to measurement to analysis to visualization of data

• Performance measurement and analysis on large systems

• Automatic Profiling Analysis

• Load Imbalance

• HW counter derived metrics

• Predefined trace groups provide performance statistics for libraries called by

program (blas, lapack, pgas runtime, netcdf, hdf5, etc.)

• Observations of inefficient performance

• Data collection and presentation filtering

• Data correlates to user source (line number info, etc.)

• Support MPI, SHMEM, OpenMP, UPC, CAF, OpenACC

• Access to network counters

• Minimal program perturbation

The Cray Performance Analysis Framework
Supports traditional post-mortem performance analysis

• Automatic identification of performance problems

• Indication of causes of problems

• Suggestions of modifications for performance improvement

• pat_build: provides automatic instrumentation

• CrayPat run-time library collects measurements (transparent to the user)

• pat_report performs analysis and generates text reports

• pat_help: online help utility

• Cray Apprentice2: graphical visualization tool

• To access software:

• module load perftools

The Cray Performance Analysis Framework

CrayPat

• Instrumentation of optimized code

• No source code modification required

• Data collection transparent to the user

• Text-based performance reports

• Derived metrics

• Performance analysis

Cray Apprentice2

• Performance data visualization tool

• Call tree view

• Source code mappings

Application Instrumentation with pat_build

• pat_build is a stand-alone utility that instruments

the application for performance collection

• Requires no source code or makefile modification

• Automatic instrumentation at group (function) level
• Groups: mpi, io, heap, math SW, …

• Performs link-time instrumentation

• Requires object files

• Instruments optimized code

• Generates stand-alone instrumented program

• Preserves original binary

Application Instrumentation with pat_build (2)
• Supports two categories of experiments

− asynchronous experiments (sampling) which capture

values from the call stack or the program counter at

specified intervals or when a specified counter overflows

− Event-based experiments (tracing) which count some

events such as the number of times a specific system call

is executed

• While tracing provides most useful information, it can be very

heavy if the application runs on a large number of cores for a

long period of time

• Sampling can be useful as a starting point, to provide a first

overview of the work distribution

Sampling with Line Number information

Where to Run Instrumented Application
• By default, data files are written to the execution directory

• Default behavior requires file system that supports record
locking, such as Lustre (/mnt/snx3/… , /lus/…,
/scratch/…,etc.)

- Can use PAT_RT_EXPFILE_DIR to point to existing
directory that resides on a high-performance file system if
not execution directory

• Number of files used to store raw data

- 1 file created for program with 1 – 256 processes

- √n files created for program with 257 – n processes

- Ability to customize with PAT_RT_EXPFILE_MAX

• See intro_craypat(1) man page

CrayPat Runtime Options
• Runtime controlled through PAT_RT_XXX environment

variables

• Examples of control

- Enable full trace

- Change number of data files created

- Enable collection of HW counters

- Enable collection of network counters

- Enable tracing filters to control trace file size (max

threads, max call stack depth, etc.)

Example Runtime Environment Variables

• Optional timeline view of program available

• export PAT_RT_SUMMARY=0

• View trace file with Cray Apprentice2

• Request hardware performance counter information:

• export PAT_RT_HWPC=<HWPC Group>

• Can specify events or predefined groups

• blas Basic Linear Algebra subprograms

• caf Co-Array Fortran (Cray CCE compiler only)

• hdf5 manages extremely large data collection

• heap dynamic heap

• io includes stdio and sysio groups

• lapack Linear Algebra Package

• math ANSI math

• mpi MPI

• omp OpenMP API

• pthreads POSIX threads

• shmem SHMEM

• sysio I/O system calls

• system system calls

• upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see pat_build(1) man page

Predefined Trace Wrappers (-g tracegroup)

Example Experiments
• > pat_build –O apa

• Gets you top time consuming routines

• Lightest-weight sampling

• > pat_build –u –g mpi ./my_program

• Collects information about user functions and MPI

• > pat_build –w ./my_program

• Collections information for MAIN

• Lightest-weight tracing

• > pat_build –gnetcdf,mpi ./my_program

• Collects information about netcdf routines and MPI

pat_report

• Combines information from binary with raw

performance data

• Performs analysis on data

• Generates text report of performance results

• Generates customized instrumentation template for

automatic profiling analysis

• Formats data for input into Cray Apprentice2

Why Should I generate a “.ap2” file?

•The “.ap2” file is a self contained compressed

performance file

•Normally it is about 5 times smaller than the “.xf” file

•Contains the information needed from the application

binary

• Can be reused, even if the application binary is no

longer available or if it was rebuilt

•It is the only input format accepted by Cray

Apprentice2

Program Instrumentation - Automatic Profiling

Analysis

• Automatic profiling analysis (APA)

• Provides simple procedure to instrument and collect

performance data for novice users

• Identifies top time consuming routines

• Automatically creates instrumentation template

customized to application for future in-depth

measurement and analysis

Steps to Collecting Performance Data
• Access performance tools software

 % module load perftools

• Build application keeping .o files (CCE: -h keepfiles)

 % make clean ; make

• Instrument application for automatic profiling analysis

• You should get an instrumented program a.out+pat

 % pat_build –O apa a.out

• Run application to get top time consuming routines

Steps to Collecting Performance Data (2)
• You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

 % aprun … a.out+pat (or qsub <pat script>)

• Generate report and .apa instrumentation file

% pat_report <sdatafile>.xf > sampling_report

% pat_report –o sampling_report
[<sdatafile>.xf | <sdatadir>]

• Inspect .apa file and sampling report

• Verify if additional instrumentation is needed

Generating Profile from APA
• Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

• Run application

% aprun … a.out+apa (or qsub <apa script>)

• Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf | <datadir>]

• View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

PAPI Predefined Events
• Common set of events deemed relevant and useful for application performance

tuning

• Accesses to the memory hierarchy, cycle and instruction counts, functional units,

pipeline status, etc.

• The “papi_avail” utility shows which predefined events are available on the system –

execute on compute node

• PAPI also provides access to native events

• The “papi_native_avail” utility lists all AMD native events available on the system –

execute on compute node

• PAPI uses perf_events Linux subsystem

• Information on PAPI and AMD native events

• pat_help counters

• man intro_papi (points to PAPI documentation: http://icl.cs.utk.edu/papi/)

• http://lists.eecs.utk.edu/pipermail/perfapi-devel/2011-January/004078.html

Hardware Counters Selection
• HW counter collection enabled with PAT_RT_HWPC

environment variable

• PAT_RT_HWPC <set number> | <event list>

• A set number can be used to select a group of predefined

hardware counters events (recommended)

• CrayPat provides 23 groups on the Cray XT/XE systems

• See pat_help(1) or the hwpc(5) man page for a list of groups

• Alternatively a list of hardware performance counter event

names can be used

• Hardware counter events are not collected by default

Predefined Interlagos HW Counter Groups
See pat_help -> counters -> amd_fam15h –> groups

 0: Summary with instructions metrics

 1: Summary with TLB metrics

 2: L1 and L2 Metrics

 3: Bandwidth information

 4: <Unused>

 5: Floating operations dispatched

 6: Cycles stalled, resources idle

 7: Cycles stalled, resources full

 8: Instructions and branches

 9: Instruction cache

 10: Cache Hierarchy (unsupported for IL)

Predefined Interlagos HW Counter Groups (cont’d)

 11: Floating point operations dispatched

 12: Dual pipe floating point operations dispatched

 13: Floating point operations SP

 14: Floating point operations DP

 19: Prefetchs

 20: FP, D1, TLB, MIPS

 21: FP, D1, TLB, Stalls

 22: D1, TLB, MemBW

 23: FP, D1, D2, and TLB

 default: group 23

Support for L3 cache counters coming in 3Q2013

New HW counter groups for Interlagos (6 counters)
• Group 20: FP, D1, TLB, MIPS

 PAPI_FP_OPS

 PAPI_L1_DCA

 PAPI_L1_DCM

 PAPI_TLB_DM

 DATA_CACHE_REFILLS_FROM_NORTHBRIDGE

 PAPI_TOT_INS

• Group 21: FP, D1, TLB, Stalls

 PAPI_FP_OPS

 PAPI_L1_DCA

 PAPI_L1_DCM

 PAPI_TLB_DM

 DATA_CACHE_REFILLS_FROM_NORTHBRIDGE

 PAPI_RES_STL

 PAPI_TLB_DM Data translation lookaside buffer misses

 PAPI_L1_DCA Level 1 data cache accesses

 PAPI_FP_OPS Floating point operations

 DC_MISS Data Cache Miss

 User_Cycles Virtual Cycles

==

USER

--

 Time% 98.3%

 Time 4.434402 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 0.001M/sec 4500.0 calls

 PAPI_L1_DCM 14.820M/sec 65712197 misses

 PAPI_TLB_DM 0.902M/sec 3998928 misses

 PAPI_L1_DCA 333.331M/sec 1477996162 refs

 PAPI_FP_OPS 445.571M/sec 1975672594 ops

 User time (approx) 4.434 secs 11971868993 cycles 100.0%Time

 Average Time per Call 0.000985 sec

 CrayPat Overhead : Time 0.1%

 HW FP Ops / User time 445.571M/sec 1975672594 ops 4.1%peak(DP)

 HW FP Ops / WCT 445.533M/sec

 Computational intensity 0.17 ops/cycle 1.34 ops/ref

 MFLOPS (aggregate) 1782.28M/sec

 TLB utilization 369.60 refs/miss 0.722 avg uses

 D1 cache hit,miss ratios 95.6% hits 4.4% misses

 D1 cache utilization (misses) 22.49 refs/miss 2.811 avg hits

==

Example: HW counter data &Derived Metrics

PAT_RT_HWPC=1

 Flat profile data

 Raw counts

 Derived metrics

PAT_RT_HWPC=2 (L1 and L2 Metrics)

==

USER

--

 Time% 98.3%

 Time 4.436808 secs

 Imb.Time -- secs

 Imb.Time% --

 Calls 0.001M/sec 4500.0 calls

 DATA_CACHE_REFILLS:

 L2_MODIFIED:L2_OWNED:

 L2_EXCLUSIVE:L2_SHARED 9.821M/sec 43567825 fills

 DATA_CACHE_REFILLS_FROM_SYSTEM:

 ALL 24.743M/sec 109771658 fills

 PAPI_L1_DCM 14.824M/sec 65765949 misses

 PAPI_L1_DCA 332.960M/sec 1477145402 refs

 User time (approx) 4.436 secs 11978286133 cycles 100.0%Time

 Average Time per Call 0.000986 sec

 CrayPat Overhead : Time 0.1%

 D1 cache hit,miss ratios 95.5% hits 4.5% misses

 D1 cache utilization (misses) 22.46 refs/miss 2.808 avg hits

 D1 cache utilization (refills) 9.63 refs/refill 1.204 avg uses

 D2 cache hit,miss ratio 28.4% hits 71.6% misses

 D1+D2 cache hit,miss ratio 96.8% hits 3.2% misses

 D1+D2 cache utilization 31.38 refs/miss 3.922 avg hits

 System to D1 refill 24.743M/sec 109771658 lines

 System to D1 bandwidth 1510.217MB/sec 7025386144 bytes

 D2 to D1 bandwidth 599.398MB/sec 2788340816 bytes

==

pat_report: Job Execution Information

CrayPat/X: Version 5.2.3.8078 Revision 8078 (xf 8063) 08/25/11 …

Number of PEs (MPI ranks): 16

Numbers of PEs per Node: 16

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Execution start time: Thu Aug 25 14:16:51 2011

System type and speed: x86_64 2000 MHz

Current path to data file:
 /lus/scratch/heidi/ted_swim/mpi-openmp/run/swim+pat+27472-34t.ap2

Notes for table 1:
…

pat_report: Table Notes

Notes for table 1:

 Table option:
 -O profile
 Options implied by table option:
 -d ti%@0.95,ti,imb_ti,imb_ti%,tr -b gr,fu,pe=HIDE
 Other options:
 -T

 Options for related tables:
 -O profile_pe.th -O profile_th_pe
 -O profile+src -O load_balance
 -O callers -O callers+src
 -O calltree -O calltree+src

 The Total value for Time, Calls is the sum for the Group values.
 The Group value for Time, Calls is the sum for the Function values.
 The Function value for Time, Calls is the avg for the PE values.
 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with Time% > 0.

 Percentages at each level are of the Total for the program.
 (For percentages relative to next level up, specify:
 -s percent=r[elative])

pat_report: Additional Information

…
Instrumented with:
 pat_build -gmpi -u himenoBMTxpr.x

Program invocation:
 ../bin/himenoBMTxpr+pat.x

Exit Status: 0 for 256 PEs

CPU Family: 15h Model: 01h Stepping: 2

Core Performance Boost: Configured for 0 PEs
 Capable for 256 PEs

Memory pagesize: 4096

Accelerator Model: Nvidia X2090 Memory: 6.00 GB Frequency: 1.15 GHz

Programming environment: CRAY

Runtime environment variables:
 OMP_NUM_THREADS=1
…

Sampling Output (Table 1)

Notes for table 1:

...

Table 1: Profile by Function

 Samp % | Samp | Imb. | Imb. |Group
 | | Samp | Samp % | Function
 | | | | PE='HIDE'

 100.0% | 775 | -- | -- |Total
|---
| 94.2% | 730 | -- | -- |USER
||--
|| 43.4% | 336 | 8.75 | 2.6% |mlwxyz_
|| 16.1% | 125 | 6.28 | 4.9% |half_
|| 8.0% | 62 | 6.25 | 9.5% |full_
|| 6.8% | 53 | 1.88 | 3.5% |artv_
|| 4.9% | 38 | 1.34 | 3.6% |bnd_
|| 3.6% | 28 | 2.00 | 6.9% |currenf_
|| 2.2% | 17 | 1.50 | 8.6% |bndsf_
|| 1.7% | 13 | 1.97 | 13.5% |model_
|| 1.4% | 11 | 1.53 | 12.2% |cfl_
|| 1.3% | 10 | 0.75 | 7.0% |currenh_
|| 1.0% | 8 | 5.28 | 41.9% |bndbo_
|| 1.0% | 8 | 8.28 | 53.4% |bndto_
||==
| 5.4% | 42 | -- | -- |MPI
||--
|| 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
|| 1.8% | 14 | 16.53 | 55.0% |mpi_bcast_
|| 1.7% | 13 | 5.66 | 30.7% |mpi_barrier_
|===

pat_report: Flat Profile

Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group

 | | | Time % | | Function

 | | | | | PE='HIDE'

 100.0% | 104.593634 | -- | -- | 22649 |Total

|--

| 71.0% | 74.230520 | -- | -- | 10473 |MPI

||---

|| 69.7% | 72.905208 | 0.508369 | 0.7% | 125 |mpi_allreduce_

|| 1.0% | 1.050931 | 0.030042 | 2.8% | 94 |mpi_alltoall_

||===

| 25.3% | 26.514029 | -- | -- | 73 |USER

||---

|| 16.7% | 17.461110 | 0.329532 | 1.9% | 23 |selfgravity_

|| 7.7% | 8.078474 | 0.114913 | 1.4% | 48 |ffte4_

||===

| 2.5% | 2.659429 | -- | -- | 435 |MPI_SYNC

||---

|| 2.1% | 2.207467 | 0.768347 | 26.2% | 172 |mpi_barrier_(sync)

||===

| 1.1% | 1.188998 | -- | -- | 11608 |HEAP

||---

|| 1.1% | 1.166707 | 0.142473 | 11.1% | 5235 |free

|==

pat_report: Message Stats by Caller

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function

 Bytes | Count | <16B | MsgSz | Caller

 | | Count | <64KB | PE[mmm]

 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total

|--

| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND

||---

|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9

4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15

||||===

|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5

||||===

. . .

Cray Apprentice2

• Call graph profile

• Communication statistics

• Time-line view

• Communication

• I/O

• Activity view

• Pair-wise communication

statistics

• Text reports

• Source code mapping

• Runs on login node

• Supported on Mac OS and

Windows also

• Cray Apprentice2 helps identify:

• Load imbalance

• Excessive communication

• Network contention

• Excessive serialization

• I/O Problems

Application Performance Summary

Statistics Overview
Switch Overview display

Load Balance View (Aggregated from Overview)
Min, Avg, and Max

Values

-1, +1

Std Dev

marks

pat_report Tables in Cray Apprentice2

• Complimentary performance data available in one place

• Drop down menu provides quick access to most common

reports

• Ability to easily generate different views of performance data

• Provides mechanism for more in depth explanation of data

presented

Example of pat_report Tables in Cray Apprentice2

New text
table icon

Right click for
table

generation
options

Generating New pat_report Tables

Apprentice2 Call Tree View of Sampled Data

Apprentice2 : Calltree View of Sampled Data

Call Tree View

Function

List

Load balance overview:

Height  Max time

Middle bar  Average time

Lower bar  Min time

Yellow

represents

imbalance time

Zoom

Height  exclusive time

Width  inclusive time

DUH Button:

Provides hints

for performance

tuning

Filtered

nodes or

sub tree

Call Tree Visualization

Discrete Unit of Help (DUH Button)

Load Balance View (from Call Tree)

-1, +1

Std Dev

marks

Min, Avg, and Max

Values

Source Mapping from Call Tree

Trace Overview – Additional Views

HW counters
plot (counters

in timeline)

HW counters
overview
(counter

histogram by
function)

Mosaic (shows
communication

pattern)

Traffic report
(MPI timeline)

Activity report
(Synchronization,

data movement, etc.
over time)

Activity Report

Mosaic View – Shows Communication Pattern

HW Counters Overview

HW Counters Plot

Traffic Report – MPI Communication Timeline

Man pages
• intro_craypat(1)

Introduces the craypat performance tool

• pat_build(1)

Instrument a program for performance analysis

• pat_help(1)

Interactive online help utility

• pat_report(1)

Generate performance report in both text and for use with GUI

• app2 (1)

Describes how to launch Cray Apprentice2 to visualize performance data

Man pages (2)

• hwpc(5)

• describes predefined hardware performance counter groups

• nwpc(5)

• Describes predefined network performance counter groups

• accpc(5) / accpc_k20(5)

• Describes predefined GPU performance counter groups

• intro_papi(3)

• Lists PAPI event counters

• Use papi_avail or papi_native_avail utilities to get list of events
when running on a specific architecture

MPI Rank Order

Is your nearest neighbor really your nearest neighbor?

And do you want them to be your nearest neighbor?

MPI Rank Placement
• Change default rank ordering with:

• MPICH_RANK_REORDER_METHOD

• Settings:

• 0: Round-robin placement – Sequential ranks are placed on the next

node in the list. Placement starts over with the first node upon

reaching the end of the list.

• 1: SMP-style placement – Sequential ranks fill up each node before

moving to the next. - DEFAULT

• 2: Folded rank placement – Similar to round-robin placement except

that each pass over the node list is in the opposite direction of the

previous pass.

• 3: Custom ordering - The ordering is specified in a file named

MPICH_RANK_ORDER.

When Is Rank Re-ordering Useful?
• Maximize on-node communication between MPI

ranks

• Grid detection and rank re-ordering is helpful for

programs with significant point-to-point

communication

• Relieve on-node shared resource contention by

pairing threads or processes that perform different

work (for example computation with off-node

communication) on the same node

Automatic Communication Grid Detection
• Cray performance tools produce a custom rank order if it’s beneficial

based on grid size, grid order and cost metric

• Heuristics available for:

• MPI sent message statistics

• User time (time spent in user functions) – can be used for PGAS

codes

• Hybrid of sent message and user time)

• Summarized findings in report

• Available with sampling or tracing

• Describe how to re-run with custom rank order

MPI Rank Order Observations
Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group

 | | Time | Time% | | Function

 | | | | | PE=HIDE

 100.0% | 463.147240 | -- | -- | 21621.0 |Total

|--

| 52.0% | 240.974379 | -- | -- | 21523.0 |MPI

||---

|| 47.7% | 221.142266 | 36.214468 | 14.1% | 10740.0 |mpi_recv

|| 4.3% | 19.829001 | 25.849906 | 56.7% | 10740.0 |MPI_SEND

||===

| 43.3% | 200.474690 | -- | -- | 32.0 |USER

||---

|| 41.0% | 189.897060 | 58.716197 | 23.6% | 12.0 |sweep_

|| 1.6% | 7.579876 | 1.899097 | 20.1% | 12.0 |source_

||===

| 4.7% | 21.698147 | -- | -- | 39.0 |MPI_SYNC

||---

| 4.3% | 20.091165 | 20.005424 | 99.6% | 32.0 | mpi_allreduce_(sync)

||===

| 0.0% | 0.000024 | -- | -- | 27.0 |SYSCALL

|==

MPI Rank Order Observations (2)

MPI Grid Detection:

 There appears to be point-to-point MPI communication in a 96 X 8

 grid pattern. The 52% of the total execution time spent in MPI

 functions might be reduced with a rank order that maximizes

 communication between ranks on the same node. The effect of several

 rank orders is estimated below.

 A file named MPICH_RANK_ORDER.Grid was generated along with this

 report and contains usage instructions and the Custom rank order

 from the following table.

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD

 Order Bytes/PE Bytes/PE%

 of Total

 Bytes/PE

 Custom 2.385e+09 95.55% 3

 SMP 1.880e+09 75.30% 1

 Fold 1.373e+06 0.06% 2

 RoundRobin 0.000e+00 0.00% 0

MPICH_RANK_ORDER File

The 'Custom' rank order in this file targets nodes with multi-core

processors, based on Sent Msg Total Bytes collected for:

Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi

Ap2 File: sweep3d.mpi+pat+27054-89t.ap2

Number PEs: 48

Max PEs/Node: 4

To use this file, make a copy named MPICH_RANK_ORDER, and set the

environment variable MPICH_RANK_REORDER_METHOD to 3 prior to

executing the program.

The following table lists rank order alternatives and the grid_order

command-line options that can be used to generate a new order.

…

Auto-Generated MPI Rank Order File
The 'USER_Time_hybrid' rank

order in this file targets nodes with

multi-core

processors, based on Sent Msg

Total Bytes collected for:

Program:

/lus/nid00023/malice/craypat/WOR

KSHOP/bh2o-

demo/Rank/sweep3d/src/sweep3d

Ap2 File: sweep3d.gmpi-

u.ap2

Number PEs: 768

Max PEs/Node: 16

To use this file, make a copy

named MPICH_RANK_ORDER,

and set the

environment variable

MPICH_RANK_REORDER_MET

HOD to 3 prior to

executing the program.

0,532,64,564,32,572,96,540,8,596

,72,524,40,604,24,588

104,556,16,628,80,636,56,620,48,

516,112,580,88,548,120,612

1,403,65,435,33,411,97,443,9,467

,25,499,105,507,41,475

73,395,81,427,57,459,17,419,113,

491,49,387,89,451,121,483

6,436,102,468,70,404,38,412,14,4

44,46,476,110,508,78,500

86,396,30,428,62,460,54,492,118,

420,22,452,94,388,126,484

129,563,193,531,161,571,225,539

,241,595,233,523,249,603,185,55

5

153,587,169,627,137,635,201,619

,177,515,145,579,209,547,217,61

1

7,405,71,469,39,437,103,413,47,4

45,15,509,79,477,31,501

111,397,63,461,55,429,87,421,23,

493,119,389,95,453,127,485

134,402,198,434,166,410,230,442

,238,466,174,506,158,394,246,47

4

190,498,254,426,142,458,150,386

,182,418,206,490,214,450,222,48

2

128,533,192,541,160,565,232,525

,224,573,240,597,184,557,248,60

5

168,589,200,517,152,629,136,549

,176,637,144,621,208,581,216,61

3

5,439,37,407,69,447,101,415,13,4

71,45,503,29,479,77,511

53,399,85,431,21,463,61,391,109,

423,93,455,117,495,125,487

2,530,34,562,66,538,98,522,10,57

0,42,554,26,594,50,602

18,514,74,586,58,626,82,546,106,

634,90,578,114,618,122,610

135,315,167,339,199,347,259,307

,231,371,239,379,191,331,247,29

9

175,363,159,323,143,355,255,291

,207,275,183,283,151,267,215,22

3

133,406,197,438,165,470,229,414

,245,446,141,478,237,502,253,39

8

157,510,189,462,173,430,205,390

,149,422,213,454,181,494,221,48

6

130,316,260,340,194,372,162,348

,226,308,234,380,242,332,250,30

0

202,364,186,324,154,356,138,292

,170,276,178,284,210,218,268,14

6

4,535,36,543,68,567,100,527,12,5

99,44,575,28,559,76,607

52,591,20,631,60,639,84,519,108,

623,92,551,116,583,124,615

3,440,35,432,67,400,99,408,11,46

4,43,496,27,472,51,504

19,392,75,424,59,456,83,384,107,

416,91,488,115,448,123,480

132,401,196,441,164,409,228,433

,236,465,204,473,244,393,188,49

7

252,505,140,425,212,457,156,385

,172,417,180,449,148,489,220,48

1

131,534,195,542,163,566,227,526

,235,574,203,598,243,558,187,60

6

251,590,211,630,179,638,139,622

,155,550,171,518,219,582,147,61

4

761,660,737,652,705,668,745,692

,673,700,641,684,713,644,753,72

4

729,732,681,756,721,716,764,676

,697,748,689,657,740,665,649,70

8

760,528,736,536,704,560,744,520

,672,568,712,592,752,552,640,60

0

728,584,680,624,720,512,696,632

,688,616,664,544,608,656,648,57

6

762,659,738,651,706,667,746,643

,714,691,674,699,754,683,730,72

3

722,731,763,658,642,755,739,675

,707,650,682,715,698,666,690,74

7

257,345,265,313,281,305,273,337

,609,369,577,377,617,329,513,52

9

545,297,633,361,625,321,585,537

,601,289,553,353,593,521,569,56

1

256,373,261,341,264,349,280,317

,272,381,269,309,285,333,277,36

5

352,301,320,325,288,357,328,304

,360,312,376,293,296,368,336,34

4

258,338,266,346,282,314,274,370

,766,306,710,378,742,330,678,36

2

646,298,750,322,718,354,758,290

,734,662,686,670,726,702,694,65

4

262,375,263,343,270,311,271,351

,286,319,278,342,287,350,279,37

4

294,318,358,383,359,310,295,382

,326,303,327,367,366,335,302,33

4

765,661,709,663,741,653,711,669

,767,655,743,671,749,695,679,70

3

677,727,751,693,647,701,717,687

,757,685,733,725,719,735,645,75

9

grid_order Utility

•Can use grid_order utility without first running the application with the Cray

performance tools if you know a program’s data movement pattern

•Originally designed for MPI programs, but since reordering is done by PMI,

it can be used by other programming models (since PMI is used by MPI,

SHMEM and PGAS programming models)

•Utility available if perftools modulefile is loaded

•See grid_order(1) man page or run grid_order with no arguments to see

usage information

Reorder Example for Bisection Bandwidth
• Assume 32 ranks

• Decide on row or column ordering:

• $ grid_order –R –g 2,16

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

• $ grid_order –C –g 2,16

0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30

1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31

• Since rank 0 talks to rank 16, and not with rank 1, we choose Row ordering

Reorder Example for Bisection Bandwidth (2)
• Specify cell (or chunk) to make sure rank pairs live on same node (but don’t care how many pairs live on

a node)

• $ grid_order –R –g 2,16 –c 2,1

0,16

1,17

2,18

3,19

4,20

5,21

6,22

7,23

8,24

9,25

10,26

11,27

12,28

13,29

14,30

15,31

Fills a Magny-
Cours node

Using New Rank Order

• Save grid_order output to file called

MPICH_RANK_ORDER

• Export MPICH_RANK_REORDER_METHOD=3

• Run non-instrumented binary with and without new

rank order to check overall wallclock time for

improvement

Example Performance Results

• Default thread ordering

• Application 8538980 resources: utime ~126s, stime

~108s

• Maximized on-node data movement with reordering

• Application 8538982 resources: utime ~38s, stime

~106s

ATP

May 22, 2013

Abnormal Termination Processing (ATP)

• Useful when a user wants to know where his/her application

crashes (i.e. stack backtrace when crashing).

• ATP gathers all of the stack backtraces into a merged stack

backtrace tree and (1) output to job stderr output file, (2) writes

to disk as the file "atpMergedBT.dot".

• To use ATP:

• At compile time:

• module load atp # this is default

• Compile code with “-g”

• In job script, before aprun command, add:

• export ATP_ENABLED=1

80

ATP (cont.)

81 Presentation Title

• atpMergedBT.dot can be viewed with statview GUI tool

Stack Trace Analysis Tool

on Blue Waters

Craig Steffen SEAS group

csteffen@ncsa.illinois.edu

May 22, 2013

mailto:csteffen@ncsa.illinois.edu

How to Use Stack Trace Analysis Tool (STAT)

• Find the MOM node where your job is running

• Ssh to that MOM node

• > ssh nidXXXX

• > module load stat

• > cd /scratch/my/job/dir/

• > mkdir stat_info_$PBS_JOBID

• > cd stat_info_$PBS_JOBID

83

How to use STAT (continued)

• > ps -aux | grep my_login_name

• [find the pid of your aprun command]

• > STAT 123456

Attaching to job launcher and launching tool

daemons...

....

Results written to

/scratch/my/job/dir/stat_info_222333/…

84 Presentation Title

To Visualize STAT data:

• Log onto login node with X forwarding

• > module load stat

• > cd [to where data is]

• STATview XXXYYY.dot

85 Presentation Title

Usage information for STAT

(after “module load stat”)

• csteffen@h2ologin2 23:33 ~ $ man STAT

• Man: find all matching manual pages

• * STAT (1)

• stat (1+)

• stat (2)

• Man: What manual page do you want?

• Man:

• csteffen@h2ologin2 23:33 ~ $

86 Presentation Title

How to find MOM node for your job:

Have the job script “phone home”:

echo 'about to run solver'

touch running_on_host_`hostname`

date

export PAT_RT_HWPC="PAPI_FP_OPS,PAPI_TOT_INS"

aprun -n 1536 -N 32 -cc 0-7,8-15,16-23,24-31

./$solver_exec_name

87 Presentation Title

Start job and wait for it to run

• csteffen@h2ologin2 00:04 ~/specfem3d/SF3DG_csteffen $ qsub run_1536.sh

• 364139.nid00221

• csteffen@h2ologin2 00:04 ~/specfem3d/SF3DG_csteffen $ qstat | grep csteffen

• 364132.nid00221 specfem3d_globe csteffen 00:00:02 C batch

• 364139.nid00221 specfem3d_globe csteffen 0 R batch

88 Presentation Title

SSH to the running MOM node

csteffen@h2ologin2 00:05 ~/specfem3d/SF3DG_csteffen $ ls -lrt running_on*

-rw------- 1 csteffen bw_staff 0 May 19 23:53 running_on_host_nid23054

-rw------- 1 csteffen bw_staff 0 May 20 00:05 running_on_host_nid25261

csteffen@h2ologin2 00:05 ~/specfem3d/SF3DG_csteffen $ ssh nid25261

89 Presentation Title

On MOM node, find PID of my aprun

csteffen@nid25261 00:06 ~ $ ps -aux | grep csteffen | grep aprun

Warning: bad ps syntax, perhaps a bogus '-'? See

http://procps.sf.net/faq.html

csteffen 23786 0.0 0.0 22316 4360 ? S 00:05 0:00

/usr/bin/perl /sw/xe/altd/bin/aprun -n 1536 -N 32 -cc 0-7,8-

15,16-23,24-31 ./xspecfem3D

csteffen 23807 0.0 0.0 28804 2168 ? S 00:05 0:00
/usr/bin/aprun -n 1536 -N 32 -cc 0-7,8-15,16-23,24-31

./xspecfem3D

csteffen 23957 0.0 0.0 5624 864 pts/0 S+ 00:06 0:00

grep aprun

csteffen@nid25261 00:06 ~ $ module load stat

csteffen@nid25261 00:06 ~ $ STAT 23807

Attaching to job launcher (null):23807 and launching tool

daemons...

90 Presentation Title

Trace files available for later analysis

Results written to /mnt/a/u/staff/csteffen/stat_results/xspecfem3D.0000

csteffen@h2ologin2 00:10 ~/stat_results/xspecfem3D.0000 $ ls -lrt

total 124

-rw-r--r-- 1 csteffen bw_staff 12 May 20 00:07 xspecfem3D.0000.top

-rw-r--r-- 1 csteffen bw_staff 48057 May 20 00:07 xspecfem3D.0000.ptab

-rw-r--r-- 1 csteffen bw_staff 634 May 20 00:07 xspecfem3D.0000.fulltop

-rw-r--r-- 1 csteffen bw_staff 1265 May 20 00:07 xspecfem3D.0000.perf

-rw-r--r-- 1 csteffen bw_staff 64140 May 20 00:07 xspecfem3D.0000.3D.dot

csteffen@h2ologin2 00:10 ~/stat_results/xspecfem3D.0000 $

csteffen@h2ologin2 00:13 ~/stat_results/xspecfem3D.0000 $ module load stat

csteffen@h2ologin2 00:13 ~/stat_results/xspecfem3D.0000 $ STATview

xspecfem3D.0000.3D.dot

91 Presentation Title

STATview

92 Presentation Title

STATview displays call trees and occupancies

93 Presentation Title

Distributed Debugging Tool (DDT)

on Blue Waters

Craig Steffen SEAS group

csteffen@ncsa.illinois.edu

May 22, 2013

mailto:csteffen@ncsa.illinois.edu

Why DDT?

• Complete Graphical Debugger

• Traps data values

• Across-execution visualizers

• Drops user into source automatically

• Synchronization and deadlock checking

• Only requires symbols (-g) to work

• Very parallel (hundreds of thousands of ranks)

• Has useful annotations for optimized-out source

95

HowTo 0:

> Module load ddt

> ddt

96 Presentation Title

HowTo 1: click on

“Run and Debug

Program”

• DDT understands qsub

and job submission

• It launches job and

executable

• DDT will start a debug

session automatically as

soon as the job starts.

97 Presentation Title

HowTo 2: Manual Launch

• To launch a program manually click on Manually

Launch a Program button.

• Select how many processes you want to debug and click

on Listen . At this point start a program or programs using

the following command:

• > ddt-client <path-to-program-binary>

• Debugging begins when all executables are running

• Used for applications with multiple, separate,

communicating executables

98 Presentation Title

HowTo 3: Attach to Running Executable

• click on Attach to a Running Program button.

• DDT will start scanning each of 64 mom nodes to locate

active jobs owned by you. If there are more than one

active job DDT will find all of them. Once DDT finds the

desired job select it and click on Attach to listed

processes button.

99 Presentation Title

HowTo 4: Start DDT as an interactive job

• > qsub -I –X [interactive job with X forwarding]

• > module load ddt

• > ddt –noqueue

• Click on Run and Debug a Program . A new

window with expandable tabs will appear.

• Click on Run button to start a debug session.

100 Presentation Title

DDT: debugging displays

• Points out faults in crashes

• Memory debugging tool detects

leaks and out-of-bounds

• “sparklines” graphical data value

summary across all ranks

• Good source code navigator and

controls

101 Presentation Title

Congestion Protection and Balanced

Injection

May 22, 2013

What is Congestion Protection?

• Network congestion is a condition that occurs
when the volume of traffic on the high-speed
network (HSN) exceeds the capacity to handle
it.

• To "protect" the network from data loss,
congestion protection (CP) globally “throttles”
injection bandwidth per-node.

• If CP happens often, application performance
degrades.

103

• At job completion you might see the following message
reported to stdout:

Application 61435 network throttled: 4459 nodes throttled, 25:31:21 node-seconds

Application 61435 balanced injection 100, after throttle 63

• The throttling event lasts for 20 seconds each time CP is
triggered.

http://lh5.google.ca/abramsv/R9WYOKtLe1I/AAAAAAAALO4/FLefbnOq5rQ/s1600-h/495711679_52f8d76d11_o.jpg

Types of congestion events

• There are two main forms of congestion: many-to-one and
long-path. The former is easy to detect and correct. The
latter is harder to detect and may not be correctable.

• Many-to-one congestion occurs in some algorithms and
can be corrected. uGNI and DMAPP based codes doing
All-to-one operations are common case. See “Modifying
Your Application to Avoid Gemini Network Congestion
Errors” on balanced injection section on the portal.

• Long-path congestion is typically due to a combination of
communication pattern and node allocation. It can also be
due to a combination of jobs running on the system.

• We monitor for cases of congestion protection and try to
determine the most likely cause.

104 Presentation Title

Balanced Injection

• Balanced Injection (BI) is a mechanism that attempts to reduce

compute node injection bandwidth in order to prevent throttling and

which may have the effect of improving application performance for

certain communication patterns.

• BI can be applied “per-job” using an environment variable or with user

accessible API.

• export APRUN_BALANCED_INJECTION=64

• Can be set from 1-100 (100 = no BI).

• There isn’t a linear relation of BI to application performance.

• MPI-based applications have “balanced injection” enabled in

collective MPI calls that locally “throttle” injection bandwidth.

105 Presentation Title

