

Keith Bisset, Jae-Seung Yeom Network Dynamics and Simulation Science Lab Virginia Tech

The Problem – Contagion Diffusion

- Compute the spread of contagion across large contact networks (3x10^9 - 8x10^10 nodes)
 - Contagious Disease (Influenza, Smallpox, Pertussis)
 - Information Flow (Rumors, Fads)
 - Social Contagion (Smoking, Obesity, Incarceration, Social Unrest)
 - Computer Malware (Viruses)
- Goal: Evaluate interventions to reduce or increase spread

Need for Computational Epidemiology

- Infectious diseases account for more than 13 million deaths a year.
- Controlled experiments often impossible in epidemiology due to ethical and practical reasons.

- Computational models help in understanding the space-time dynamics of epidemics.
- Pervasive computational environments can provide real-time access to models, data, and expert opinion to analysts as an epidemic unfolds.

Computational Epidemiology Driven by Synthetic Information

- Synthetic Information Provides
 - Interactions with other systems
 - Rapid response to emerging crises
 - Flexibility to adapt to different areas
 - Integration of disparate data sources
- Forecasting
 - Surveillance
 - Social media data
 - Blogs
 - Survey data

- Course of Action Analysis
 - Cost-benefit analysis
 - Prioritization of interventions
 - Planning Exercises
- Situational Awareness
 - Estimation of number infected
 - Estimation of disease characteristics
- Preparedness and Training

Constructing synthetic social contact networks

Simulating contagion over dynamic networks

- Agent-based model
- Realistic Population
- Complex Interventions
- Co-evolution between
 - Contact Network
 - Individual Behavior
 - Public Policy
 - Individual Health

Selected Case Studies

- Pandemic Influenza Planning Fall 2006
 - How can we prepare for a likely influenza pandemic?
- Emergence of H1N1 Influenza Spring Fall 2009
 - What are the characteristics of this influenza strain and their likely impact on US populations?
- Optimizing Household Response to Epidemics Spring 2011
 - Do behaviors within households, while harder to simulate, have a significant impact on the course of an epidemic?
- Adenovirus Pandemics Simulation and Analysis August 2013
 - How can decision makers become familiar with the challenges and decisions they are likely to encounter during a national pandemic, mainly centered on the allocation of scarce resources?
- Emergence of Middle East Respiratory Syndrome Now
 - We are exploring how simulation combined with a synthetic informatics analytic approach might shed light on what may be driving this outbreak.

Antiviral Distribution Planning

Would retail dispensing of antivirals reduce morbidity and mortality?

- Model individual decision-making in socio-economic context
- Incorporate the diagnostic process (false + / -) into intervention applications
- Dynamic application of antivirals based on current state of infection
- Integrating economics of health care decisions with dynamic simulation
- Effect of individual decision-making on epidemics

Emergence of H1N1 "Swine Flu"

- Early days of 2009 H1N1 pandemic
- Transmissibility and Virulence not known
- Analysts at DTRA Reachback were running simulations and interpreting results on a 24 hour cycle to provide input to a daily briefing to HHS as the epidemic was unfolding
- Regular training of analysts played critical role in rapid response

Open Source Data based Forecasting

Can freely available data be integrated with statistical and simulation models to forecast the near term future?

- Goal: Flu Forecast similar to current weather forcasts
- Unlike weather people can actually do something to change outcome
- Harness social media to infer population level sentiments and identify events of interest
- Processing of alternative data sources upstream from event causation
- Fusing multiple predictive data streams to dynamically optimize predictions
- Integrating time series analysis with simulation models
- Evaluating social media as an information source

ISIS: Complete analyst workflow support

Key Challenges

- Large, highly irregular, dynamic network
- Large number of small messages
- Large number of runs needed for study, even more for forecasts
- Atypical instruction mix (not floating point)

Instruction Type	Portion
Load/Store (L1-D)	58%
Branch	19% (70% Conditional)
Floating Point	< 1%

EpiSimdemics Strong Scaling

Model 280 million people on 352k cores for 120 days: 12 seconds

- System: NCSA Blue Waters
- 352k Cray XE6 core modules
- US Population: 280 million
- Simulated time: 120 days
- Walltime: 12 seconds
- Granularity: < 800 people/core

Projected Global Population time: 6 minutes

Ongoing Work

- World Domination
- More complex behavior
- Long distance travel model
- Co-circulating diseases (e.g., Influenza and ILI)
- Complex Contagion

Acknowledgements

- NDSSL and our collaborators
- NCSA
- Sanjay Kale and PPL
- NSF, NIH, DoD, CDC, HHS

CNIMS Contract HDTRA1-11-D-0016-0001, NIH MIDAS Grant 5U01GM070694-11, NSF Blue Waters OCI-0832603, NSF PetaApps Grant OCI-0904844,

