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Leaders in parallel software development tools

Session 1: Use The Source

-> Measure the performance of an MPI program

-> Explore the code with Allinea MAP's viewer

-> |dentify a bottleneck and deduce its cause

-> Change the code and measure the improvement

www.allinea.com



allinea

Leaders in parallel software development tools

Review: Use The Source

-> |ntroduced to Allinea MAP

-> Used code folding to explore an unfamiliar file

-> Saw high MPI| usage and high MPI imbalance

-> Deduced cause — rand() is slow!

-> Fixed by distributing rand() work to nodes for >2x speedup
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13:16:28-13:16:30 (range 2.574s): Mean Memory usage 7.2 M; Mean MPI call duration 0.6 ms; Mean CPU floating-point 20.7 %;
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Session 2: CPU Optimization

-> |nterpret Allinea MAP's metric graphs

-> Explore compiler loop vectorization

-> Recognize cache-related problems

-> |Improve loop cache performance

-> Experiment with conflicting optimizations
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11:40:36-11:40:38 (range 2.574s): Mean Memory usage 7.2 M; Mean MPI call duration 0.7 ms; Mean CPU floating-point 19.9 %;
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Review: CPU Optimization

-> Introduced to single-core optimization with Allinea MAP
-> Saw zero vectorization and corrected with compiler flags
-> Recognized poor cache performance and its solutions:
In this case improved temporal locality with loop fusion
-> Looked at conflicting optimizations — vectorization and loop fusion
-> Found further benefits by swapping library functions

for(i = 0; i<subsize; i++)
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Review: Profiling with Allinea MAP

Compile with both -O3 and -g
-ffast-math and friends are also recommended!
Remember that “time mpirun” includes system overheads
Run interactively with: map program-name
Run in batch mode with: map -n #procs -profile program-name
Use View->Fold All to explore unfamiliar files
Use metric views to spot imbalance and cause of bottlenecks

In this course we improved performance by 4x — let me know how
you get on with your own codes!
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