
Session 1: Use The Source

Session 1: Use The Source

-> Measure the performance of an MPI program
-> Explore the code with Allinea MAP's viewer
-> Identify a bottleneck and deduce its cause
-> Change the code and measure the improvement

Review: Use The Source
-> Introduced to Allinea MAP

-> Used code folding to explore an unfamiliar file

-> Saw high MPI usage and high MPI imbalance

-> Deduced cause – rand() is slow!

-> Fixed by distributing rand() work to nodes for >2x speedup

Session 2: CPU Optimization

Session 2: CPU Optimization
-> Interpret Allinea MAP's metric graphs
-> Explore compiler loop vectorization
-> Recognize cache-related problems
-> Improve loop cache performance
-> Experiment with conflicting optimizations

Review: CPU Optimization
-> Introduced to single-core optimization with Allinea MAP

-> Saw zero vectorization and corrected with compiler flags

-> Recognized poor cache performance and its solutions:

In this case improved temporal locality with loop fusion

-> Looked at conflicting optimizations – vectorization and loop fusion

-> Found further benefits by swapping library functions

Review: Profiling with Allinea MAP
Compile with both -O3 and -g

-ffast-math and friends are also recommended!

Remember that “time mpirun” includes system overheads

Run interactively with: map program-name

Run in batch mode with: map -n #procs -profile program-name

Use View->Fold All to explore unfamiliar files

Use metric views to spot imbalance and cause of bottlenecks

In this course we improved performance by 4x – let me know how
you get on with your own codes!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7

