h;IIIIIIIIIgn

2
allinea

Session 1: Use The Source

www.allinea.com



allinea

Leaders in parallel software development tools

Session 1: Use The Source

-> Measure the performance of an MPI program

-> Explore the code with Allinea MAP's viewer

-> |dentify a bottleneck and deduce its cause

-> Change the code and measure the improvement

www.allinea.com



allinea

Leaders in parallel software development tools

Review: Use The Source

-> |ntroduced to Allinea MAP

-> Used code folding to explore an unfamiliar file

-> Saw high MPI| usage and high MPI imbalance

-> Deduced cause — rand() is slow!

-> Fixed by distributing rand() work to nodes for >2x speedup

CPU floating-point (%) P B
o - 100 (6.9avg) . - W — = — - = = = = —

CPU floating-point (%) _—_ m _—_— _—_—_ -1 - ____ — ____ - =
o - 100 ( 20.7 avg ) — e T - . - - - - il -‘-—___-___T F

13:16:28-13:16:30 (range 2.574s): Mean Memory usage 7.2 M; Mean MPI call duration 0.6 ms; Mean CPU floating-point 20.7 %;

www.allinea.com



h;IIIIIIIIIgn

2
allinea

Session 2: CPU Optimization

www.allinea.com



T

2
allinea

Session 2: CPU Optimization

-> |nterpret Allinea MAP's metric graphs

-> Explore compiler loop vectorization

-> Recognize cache-related problems

-> |Improve loop cache performance

-> Experiment with conflicting optimizations

Memory usage (M)
58 - 7.7 (7.2 avg)

—_— [ | smm———— . . —_———— = m— — —_— — = _——— e, . e e — = =

MPI call duration (ms)

o - 44 (07avs) B BIEEE Nl FlEE I E IR IR
CPU floating-point (%) _-_ n _—_—_ _—_—_ I R 1 _—_—_ _—_—_—
0 - 100 (19.9 avg ) - - = . - - = - - - — - = - - ==

— - —_—— — - B — . = - —

11:40:36-11:40:38 (range 2.574s): Mean Memory usage 7.2 M; Mean MPI call duration 0.7 ms; Mean CPU floating-point 19.9 %;

www.allinea.com



[

2
allinea

Review: CPU Optimization

-> Introduced to single-core optimization with Allinea MAP
-> Saw zero vectorization and corrected with compiler flags
-> Recognized poor cache performance and its solutions:
In this case improved temporal locality with loop fusion
-> Looked at conflicting optimizations — vectorization and loop fusion
-> Found further benefits by swapping library functions

for(i = 0; i<subsize; i++)

535 s i 3 unbers(i] = rand();
0. 7% . o _ for(i = 0; i<subsize; i++)
L Y Y TAR M TY NTopw g ey S numbers[i] = sqrt(numbers([i]);
.53 @ for(i = 0; i<subsize; i++)
32.7% gyl b ﬂlﬁ-lll-imluh;; © double x = random() ;

- IHIL (1 | i‘l 11 HEm i-lh L ;_: ) :-'I"]]TIbEIS[i] = Sqrtl::':]r'

www.allinea.com



allinea

Leaders in parallel software development tools

Review: Profiling with Allinea MAP

Compile with both -O3 and -g
-ffast-math and friends are also recommended!
Remember that “time mpirun” includes system overheads
Run interactively with: map program-name
Run in batch mode with: map -n #procs -profile program-name
Use View->Fold All to explore unfamiliar files
Use metric views to spot imbalance and cause of bottlenecks

In this course we improved performance by 4x — let me know how
you get on with your own codes!

www.allinea.com



	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7

