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I. Motivation 

•  Clouds crucial regulator of Earth’s radiation budget 
•  Knowledge of cloud radiative properties required 
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Wide variety of non-spherical 
shapes !!! 
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Finding methods to compute scattering 
properties of particles 
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§  Geometric Optics for large particles 
-  Computationally cheap 
-  Approximation 
-  Only valid when particle is much larger than λ of incident light  
-  Size parameter χ = πDmax/λ >>> 1   
 
 

§  Exact solutions for small particles 
-  Solve Maxwell’s equations 
-  ADDA, FDTD, T-matrix, etc.  
-  Computationally expensive 
-  Resources required increases with particle size 
-  Applicability of upper limit is not well known 
-  Theoretically, possible with large resources 

Dmax 

 Light scattering solution 

II. Challenging Problems 
 Non-spherical particles 



 Shape & Size 

Various shapes and sizes of ice crystals !!! 
From ~ 5 to 1000s of µm 

II. Challenging Problems 



 Orientations 

§   Most ice crystals do not have preferred orientation 

§   Orientation average required to compute scattering 
      properties needed for models/retrieval schemes 

§   Random orientations have been assumed in scattering  
      calculations 

Column 

II. Challenging Problems 



 Wavelengths 

§  Calculations required across large spectrum 
§  Refractive index of ice crystals vary with λ	
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II. Challenging Problems 

§   Light scattering solutions for non-spherical particles 
      require large computing resources (increase with size) 

§   Various shapes and sizes 

§   Across large spectrum ranges 

§   Orientation average is required 
 
§   NICS Kraken & TACC Stampede 

§   Using BW, large scattering database is being built 
 
§   Input for radiative transfer models, climate models, and  
      satellite retrieval algorithms 



II. Challenging Problems 

-  Represent crystals by N 
dipoles 

-  N linear equations for N 
fields exciting N dipoles 

  
-  Discretization of integral 

equations using Green’s 
function of the surrounding 
medium 

-  Any shape 
-  Faster than FDTD 
-  Free source code 
-  ADDA V1.3b4 

Discrete dipole approximation (DDA) 
by Purcell and Pennypacker (1973)  



   Orientations 

Column, D=10 µm 
λ= 0.55 µm 
 
DDA 
1000 orientations 
 
Wide range of  
variations !  
 
How many  
orientations 
are required 
for accurate  
results  
(e.g., 1.0%) ? 
 

III. Orientation Average 



Column, D=10 µm 
λ= 0.55 µm 
 
DDA 
1000 orientations 
 
Wide range of  
variations !  
 
How many  
orientations 
are required? 

Using 10 BW nodes 
~ 5.6 hr. each orientation 

~ 56,000 node hr. total 

III. Orientation Average 

   Orientations 



III. Orientation Average 

§   Orientation average for mean scattering properties 
      - Phase matrix (e.g., P11 and degree of linear polarization) 
      - Asymmetry parameter (g)  
      - Single-scattering albedo (ωο) 
 
§   Euler angles, α, β, γ, define  
      particle orientations 
 
      1. Lattice grid  
          - equal spaced over Euler angles 
 
      2. Quasi Monte Carlo (QMC) 
          - efficiently choose Euler angles   

   Orientations 



§  4 crystals models 
  - Gaussian random sphere (GS) 
  - Droxtal (DX) 
  - Budding Bucky ball (3B)  
  - Column (COL) 
 
§  Dmax = 10 µm  
§  ADDA  
§  Lattice grid & QMC  
§  λ=0.55, 3.78, and 11.0 µm 

 Ice Crystals 
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GS λ = 3.78 µm 

Average 
converges with 
number of 
orientations 

III. Orientation Average 



GS λ = 3.78 µm 

+ 0.5 % 

- 0.5 % 

1.0% 
accuracy 

III. Orientation Average 



GS λ = 3.78 µm 

+ 0.5 % 

- 0.5 % 

1.0% 
accuracy 

QMC needs 
1152 orientations  
for 1.0 % 
accuracy in average 
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GS λ = 3.78 µm 

§  Lattice grid 
needs 14.67 
times more 
computing 
time than 
QMC 

Min. # ratio 
Lattice grid/QMC 
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GS λ = 0.55 µm 

More orientations are required at non-absorbing λ !!! 
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COL λ = 0.55 µm 

III. Orientation Average 

More orientations are required than for GS !!! 



III. Orientation Average 

§  QMC requires fewer orientations than lattice grid  
      for nonspherical atmospheric particles & less 
      computing time (more than 50% less) 

§  Single-scattering properties & MIN # orientations  
      depend on particle shapes 
 
§  Required MIN # of orientations depends on λ	



§  Convergence of scattering properties has to       
      be checked when an exact solution is not available 

Um and McFarquhar (2013, JQSRT) 



IV. Atmospheric Halos 

§  Scattering calculations of small ice crystals requires 
      large computing resources 

§  GOM for large particles needs less resources 

§  Find threshold size where can switch to GOM   
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Upper  
Tangent 

46° Halo 
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IV. Atmospheric Halos 
Circular Halos 

§  Halos appear in geometric optics regime 
§  Finding size at which ADDA calculations produce halos 



Length (L) 

Width (W) 

Aspect Ratio (AR) = L / W 
 
AR = 0.10, 0.25, 0.50, 1.00, 2.00, 4.00 
        

Thin Plate 
Long Column 

 W : up to 20 µm 
  
 L:   up to 48 µm  
 
@ λ=0.55 µm using ADDA & QMC     

IV. Atmospheric Halos 
Simulations 



W =5 µm  L =5 µm 
χ =28.6   χveq =30.7  

W =10 µm  L =10 µm 
χ =57.1   χveq =61.4   

W =20 µm  L =20 µm 
χ =114.2   χveq =122.7   

AR = 1.0 

IV. Atmospheric Halos 

Size increases 

Scattering Phase function P11 
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W =5 µm  L =5 µm 
χ =28.6   χveq =30.7  

W =10 µm  L =10 µm 
χ =57.1   χveq =61.4   

W =20 µm  L =20 µm 
χ =114.2   χveq =122.7   

AR = 1.0 

§  Halos form as particle size increases 

IV. Atmospheric Halos 



§  Halo Ratio (HR) = P11(θ1)/P11(θ2) 

§  22° 
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§  Halo Ratio (HR) = P11(θ1)/P11(θ2) 

§  22° 

     - P11(22°)/P11(18°) 

§  46° 
     - P11(46°)/P11(42°) 
 

§  Halo formed when HR > 1.0 

§  Compact shape (AR ~ 1.0)  
     22° and 46° 

§  AR=0.5, 1.0, and 2.0 for 46° 

IV. Atmospheric Halos 



§  Polar coordinate plots of P11 

§  Large particles with GOM 

§  AR = 0.25 (top) 

§  AR = 1.00 (middle) 

§  AR = 4.00 (bottom) 
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§  Polar coordinate plots of P11 

§  Large particles with GOM 

§  AR = 0.25 (top) 

§  AR = 1.00 (middle) 

§  AR = 4.00 (bottom) 

§  What we see in sky 

§  Filled circle is Sun 

§  Inner bright ring is 22° halo 

§  Outer bright ring is 46° halo  

0.25 

1.0 

4.0 

AR GOM 



§  Small particles, 

§  W = 4.0 µm with ADDA 

§  No distinct halos 

§  Diffraction dominant 
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§  Largest particles in 

     each AR with ADDA 

§  22° halo for all AR 

§  46° for AR=1.0  

§  Compact shape 

(AR=1.0) produces 

clear & sharp halos 

§  More larger size is 

required 

ADDA AR 

0.25 

1.0 

4.0 

W = 4.0 µm 

GOM ADDA 

Largest 



V. Summary 

§  Advanced orientation average scheme (i.e., QMC) can 
save significant amount of computing time (more than 
50%) compared to conventional scheme (i.e., equal 
spaced) 

§  Atmospheric halos form @ size parameter of ~60, 
depending on aspect ratio of ice crystal 

§  Calculations with larger size required to be in 
geometric optics regime	



§  Scattering database being built for radiative transfer 
models, climate models, & satellite retrieval 
algorithms 





   Asymmetry parameter (g) 

§  Convergence was made 
     - AR = 0.5, 1.0, 2.0, 4.0 

§  For AR = 0.1 & 0.25 
     - more larger sizes are  
       required for convergence 

§  ADDA 
§  GOM (dot line)  



I. Mo 


