
Topology Aware Mapping

and Load Balancing

Ronak Buch, Laxmikant Kale

rabuch2@illinois.edu

Blue Waters Symposium - May 19, 2017



Topology Aware Mapping



Topology Aware Task Placement

• What is topology aware task placement?
• Place tasks so that communicating tasks are closer in the machine

topology: minimize off-node traffic and link contention

• Not the same as simple rank reordering

• Takes into account the actual nodes in the job and distance in the

network between tasks

• Why topology aware task placement?
• Execution time can improve significantly (> 2x) for large jobs in

some applications compared to default BW mapping

1



Mapping Example - 2D Application on 2D Torus

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Application Domain Machine Topology

2D application grid, ranks ordered by row

Neighbor communication, each cell an MPI task 2



Mapping Example - 2D Application on 2D Torus

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Application Domain

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

Machine Topology

If same shape, preserve structure

3



Mapping Example - 2D Application on 2D Torus

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Application Domain

12

1

10

2

15

14

11

5

9

0

4

6

3

8

7

13

Machine Topology

Bad placement → Longer paths → Higher link utilization → Link

contention → Longer communication time 4



2D 10x10 Virtual Grid → 2D 10x10 Torus

• Near-neighbor communication, each task sends unit load to

each neighbor

• Random shortest path for each pair of communicating ranks

Layout Avg Hops Max Hops
Avg

Link Load

Max

Link Load

Row Order 1 1 1 1

Random 5.15 9 5.15 14

5



2D 10x10 Virtual Grid → 2D 5x20 Torus

Layout Avg Hops Max Hops
Avg

Link Load

Max

Link Load

Row Order 6.16 12 6.16 17

Random 6.15 11 6.15 25

Optimal1 2.15 11 2.15 7

1Really, this is “near optimal”

6



How Important is Task Placement for my Application?

• Application communication patterns (near-neighbor,

collectives)

• Volume of communication

• Communication to computation ratio

• Allocation shape

• Job size: larger jobs have more communication, and

potentially larger distances between tasks

• Some applications (e.g. MILC) can get more than 2x-3x

speedup in execution time on large jobs

7



How to do Mapping?

• Perhaps easiest solution is to use an automatic tool and test to
see if there are actual improvements. Worst case: no
improvement
• Remember that it might only improve in certain job sizes and job

shapes

• Analyze the communication behavior of the application
• Knowledge of application: computation to communication ratio,

volume of point to point traffic, collectives pattern

• If user doesn’t have this knowledge → Profiling tools

8



Profiling Tools

• CrayPat
• Large suite of performance analysis tools, including tracing

• mpiP
• Link-time library: no need to recompile application

• Presents statistical information on MPI calls

• TopoProfiler
• Link-time library

• Collects information on MPI calls

• Includes topological information (hop-bytes, rank placement in 3D

torus) from the run

• Extract the communication graph (messages and bytes communicated

between MPI tasks)
9



Mapping Tools

• In the application: hard
• Can get topological info at runtime, but have to move manually

• CrayPat’s grid order tool
• Can place communicating tasks in same node, but doesn’t place

communicating nodes nearby, doesn’t deal with irregular patterns

• Topaware
• Needs to know application grid shape, assumes near-neighbor comm

pattern in grid, only works in specific geometries

• genM
• Works with any MPI application, system topology

• No source code changes

• Works with any communication pattern, including irregular
10



genM

• Communication graph as input

• Goal: minimize average (per-rank) hopbytes

• hopbytesa =
∑
n

bytes(a, n) · distance(a, n)

• Keep communicating tasks close, weighted by bytes

• NP-hard problem → multiple trials of random greedy search

• Runs separate instance of algorithm on every processor

11



Running genM

Inside batch job (comm graph.txt from TopoProfiler):

aprun -n NUM_PROCESSORS ./mapper comm_graph.txt

export MPICH_RANK_REORDER_METHOD=3

aprun -n NUM_PROCESSORS ./program args

MPICH RANK REORDER METHOD = 3 tells aprun to use a custom

rank order from MPICH RANK ORDER in the current directory.

12



Example: MILC

• Lattice QCD Application

• 4D lattice (3 spatial dimensions + time)

• Extremely sensitive to placement

• Near-neighbor communication pattern

13



MILC Profiling - Default Mapping, 8x8x8, 16K Tasks

Total Execution Time: 342.8184

Average Hopbytes (rank average): 2.6368

Min Hopbytes: 2.2034 on Rank: 6624

Max Hopbytes: 3.7892 on Rank: 15360

Average Idle Time (rank average): 138.7806

Min Idle Time: 113.4179 on Rank: 4596

Max Idle Time: 166.2557 on Rank: 16201

Average P2P Operation Time (rank average): 99.6960

Min P2P Operation Time: 72.5383 on Rank: 3989

Max P2P Operation Time: 127.9738 on Rank: 14696
14



MILC Profiling - Default Mapping, 8x8x8, 16K Tasks

Total Execution Time: 100%

Average Hopbytes (rank average): 2.6368

Min Hopbytes: 2.2034 on Rank: 6624

Max Hopbytes: 3.7892 on Rank: 15360

Average Idle Time (rank average): 41%

Min Idle Time: 113.4179 on Rank: 4596

Max Idle Time: 166.2557 on Rank: 16201

Average P2P Operation Time (rank average): 29%

Min P2P Operation Time: 72.5383 on Rank: 3989

Max P2P Operation Time: 127.9738 on Rank: 14696
15



MILC Mapping Results on BW

16



MILC Mapping Results on BW - con’t

17



Load Balancing



Background

Load balance is integral to achieving scalability and performance.

Hard to do, in general:

• Modern machines too complex to manually manage locations

• Multi-resolution - variation in task granularity

• Multi-module - loosely connected diverse tasks

• Dynamic/adaptive applications have high variation

18



What is Load Imbalance?

• Application completes

only when all

processors finish

• Different processors

get variable amounts

of work

• Resources wasted in

waiting

19



Golden Rule of Load Balancing

Fallacy: objective of load balancing is to minimize variance in load

across processors

Example:
• 50,000 tasks of equal size, 500 processors:

• A: All processors get 99, except last 5 gets 100 + 99 = 199

• OR, B: All processors have 101, except last 5 get 1

Identical variance, but situation A is much worse!

Golden Rule: It is okay if a few processors are idle, but avoid having

processors that are overloaded with work.

20



How to Diagnose Load Imbalance

• Often hidden in statements such as:
• High idle time

• Very high synchronization overhead

• Time spent in collectives (processors waiting for a reduction, for

example)

• Count total amount of computation (ops/flops) per processor
• In each phase!

• Balance may change from phase to phase

21



How do we Balance Load?

In Charm++:

• Objects are migratable

• Programs are overdecomposed, so there are many objects

• Runtime measures PE and object load

• Balancing algorithms compute new mappings

• Runtime moves objects according to mapping

22



Charm++ Balancing Results

Figure: Charm++ LeanMD Results
23



What about MPI?

In MPI:

• Ranks aren’t generally migratable

• Programs aren’t overdecomposed, usually ranks ≤ cores

• No automatic load measurement

But, if application developers can handle these things, the same

algorithms can be used to compute new mappings.

24



Load Balancing Library

We have extracted load balancing strategies from Charm++ and

released them as a standalone library.

Can easily be linked to an MPI program and be used to make

object placement decisions.

Application calls into library with object load and location data,

library returns new mapping given by selected strategy.

No mechanism for migration is included; application is responsible

for that.

25



Using the Load Balancing Library

To use the library, call:

void CharmLB_Assign_Objs(

LBData& interface,

STRATEGY strategy

)

interface is a structure that contains the processor and load

data, the new mapping is stored inside when this call returns.

26



What if Manually Migrating is Impossible?

If an application can’t be easily decomposed into migratable data

segments, it can be hard to apply the library.

However, Adaptive MPI (AMPI) may help.

AMPI is an MPI implementation on top of Charm++ which supports

load balancing by migrating entire ranks without requiring code

modifications.

Some limitations exist (notably global variables), but has been

shown to be effective.

27



AMPI Balancing Results

Figure: LULESH AMPI Results
28



What about Accelerators?

Charm++ load balancers have a long history in balancing work

across CPUs.

Balancing work across CPUs and GPUs is more complicated:

• Some tasks are GPU only

• Some tasks have both CPU and GPU versions

• Performance for same task varies based on hardware

vector load balancing and accel load balancing are results of new

research to address these problems.

29



Vector Load Balancing

Balances programs with CPU only and GPU only work.

The Charm++ runtime measures load data for each hardware target.

Thus, an object has a two-dimensional load vector,

< cpuload , gpuload >.

The work is then distributed to minimize the maximum load in both

dimensions as much as possible.

Currently working on adding additional dimensions, such as memory

load.

30



Synthetic Vector Load Balancing Results

Figure: Object Loads
31



Synthetic Vector Load Balancing Results (con’t)

Figure: Regular GreedyLB Results
32



Synthetic Vector Load Balancing Results (con’t)

Figure: VectorLB Results
33



Accel Load Balancing

Some programs have fungible work that can be retargeted to

different hardware devices.

Different from vector since static division of labor no longer exists.

Now, we must find the optimal “split” point to equally divide the

tasks between the CPU and GPU.

To do this, the runtime dynamically assigns work to different

hardware targets based on some strategy. Users can specify static

division percentages or dynamic strategies where the runtime

searches for the optimal split.
34



Accel Load Balancing Results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percent Device

0

5

10

15

20

25

30

Ti
m

e 
(s

ec
on

ds
)

Figure: Accel Stencil3d Load Balancing Results 35



Accel Load Balancing Results (con’t)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percent Device

0

2

4

6

8

10

12

14

16

18

Ti
m

e 
(s

ec
on

ds
)

Figure: Accel MD Load Balancing Results 36



Beyond the Scope of This Talk

• Multi-strategy load balancing

• Custom load metrics

• Details of heterogeneous load balancing

• Automatic load balance frequency and strategy selection

• Writing your own load balancing strategy

If interested: talk to us!

37



Questions?
rabuch2@illinois.edu

charm@cs.illinois.edu

https://charm.cs.illinois.edu

37


	Topology Aware Mapping
	Background
	Tools and Techniques

	Load Balancing

