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LSQR in Seismic Tomography
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• Seismic Tomography: image sub-surface of geological 
structures using seismic waves. 

• LSQR (Least Squares with QR factorization): 
a numerical method for solving sparse linear equations 
in an iterative way.
▫ Widely used in seismic tomography.
▫ Features: 

Highly efficient and capable of solving different types of linear 
systems for large linear inversion problems.
The estimated solution usually converges fast.



LSQR
• Solves linear systems, A×x = b, 

where A is a huge sparse matrix, x is 
the solution variables, and b is a 
right hand side vector (constant). 

• Requires loading entire matrix into 
memory.

• The iterative steps of LSQR include 
several basic linear algebra 
operations, e.g. scale and norm and 
two matrix vector multiplications 
i.e., y←y +A×x and x ← x+AT×y, 
where y is initially derived from 
vector b. 
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Real-World Application Challenges
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• Memory-intensive  
▫ LSQR requires load the entire dataset into the memory. But the 

matrix can be very huge and very sparse. The dataset could be 
much larger than the above dataset depending on the geological 
region of interest to calculate.

• Compute-intensive
▫ Thousands or even more of iterations. Every iteration is 

compute-intensive.

• Communication-intensive
▫ Massive communication between compute nodes.



General Idea

• Propose a partitioning strategy that is based on the 
special structure of the matrix. Specially, SPLSQR 
(Scalable Parallel LSQR) contains a novel data 
decomposition strategy that treats different components 
of the matrix separately. 

• SPLSQR algorithm was optimized with scalable 
communication volume between a fixed and modest 
number of communication neighbors. 
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Matrix Layout
• In structure seismology, the 

coefficient matrix (A) is composed of 
kernel (top) and damping (bottom) 
component. 

• Kernel: <1% rows; > 90% of 
nonzeros; sparse but relatively dense 
compared with damping, 
unstructured. 

• Damping: >99% rows; < 10% of 
nonzeros; extremely sparse, 
structured.
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Major Steps of SPLSQR Algorithm Based on 
MPI Programming Model
(1) Reorder damping component to minimize bandwidth.
(2) Decomposition

▫ partition kernel across columns
▫ Partition damping across rows
▫ Partition damping transpose across columns

(3) Iterative steps
• Step-1

▫ Multiply kernel with vector.
▫ Global sum partial result vector.
▫ Communicate with neighbors.
▫ Multiply damping with vector.

• Step-2
▫ Multiple kernel transpose with vector
▫ Communicate with neighbor.
▫ Multiple damping transpose with vector.

• Step-3
▫ Sum result vector.

(4) Test convergence: if false go to (3), else exit and output final result.
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Matrix Reordering
• The original damping submatrix with 

big bandwidth results in huge 
communication volume because there 
are large overlaps between MPI tasks 
after decomposition.

• Goal: move nonzeros of damping to 
diagonal area to minimized 
bandwidth, and thus to reduce overlap 
in later parallel computation, and 
reduce communication eventually.

• Perform row permutations such that 
the position of leading nonzero of each 
row is in descending order. 

• Result: several thin bands in the 
diagonal area. This structure can 
reduce communication. 
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• (a) original damping
• (b) leading nonzero of (a)
• (c) result of applying row 

permutation for (a) 
• (d) enlargement of top of part (c), 

clearly show several thin bands.



Data Decomposition

• Different colors represent different MPI tasks. 
• The matrix has a kernel component (top) and a damping component 

(bottom).
• In memory, store a single copy of the kernel component in compressed 

sparse column (CSC), and store two copies of the damping component of 
the matrix, i.e., one copy of the original in compressed sparse row (CSR)
and one copy of the transposed matrix in CSC, .

• Kernel component of the matrix is partitioned by columns, while the 
damping component of the matrix is partitioned by rows. The transposed 
damping matrix uses the same partitioning as the kernel component. 
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Parallel Computation: y←y +A×x
MPI Allreduce on 

relative small 
vectors

1. Each task multiplies its local piece of kernel Aki with local piece of xi

and yields its kernel part of vector, yki ..

2. A reduction across all tasks is performed on yki to combine the
partial results (black).



Parallel Computation: x ← x+AT×y

11

1. Each task multiplies its local AkT
i with yk to construct xki. 



Communication

• MPI_Allreduce on kernel part of vector y, vector length 
= number of row in kernel which is trivial compared with 
the whole matrix.

• Local task compares local vector with required extended 
vector and decides which neighbors it needs to 
communicate.

• Communication is scalable: 
▫ larger core -> less overlaps with neighbors -> less 

communication volume.
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Optimization: Load Balance
• The figures show number of nonzeros in each MPI task (processor).
• Left: Nonzeros in kernel is not evenly distributed. So evenly 

partition columns results in load imbalance. 
• Middle: Strategy: uneven column partition that makes each MPI 

task has similar data load (number of nonzeros). However, perfect 
load balance result in uneven partition of vector, and thus result in 
communication imbalance.

• Right: Trade-off between computation load and communication 
load. Set max_nonzero/avg_nonzero=1.30 
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max_nonzero/avg_nonzero=6.71                   max_nonzero/avg_nonzero=1.00                   max_nonzero/avg_nonzero=1.30       



Optimization: GPU
• All steps in the major iterative 

steps (yellow) are ported to GPU.
• The initialization steps are the 

same as the CPU version except 
• Memory copy from host to device 

before the main iterative steps.
• Memory copy from device to host 

after the main iterative steps.
• CUDA enabled cuBLAS library: 

compute scale and norm 
operations on vectors;

• CUDA enabled cuSPARSE
library: compute SpMV: y←y
+A×x and x ← x+AT×y;

• Write own kernels for others.
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Initial Experiment on GPU
• Single GPU performance comparison in BW XK node. 
• Need more allocation to test  performance on large-scale GPUs.

15

0

2

4

6

8

10

12

1 CPU core 16 CPU cores 1 GPU (NVIDIA GK110)

ti
m

e 
(s

ec
)

time



GPU Experiments of PLSQR(older version of 
SPLSQR): Strong Scalability

• Strong scalability defines how the execution time varies with the number 
of cores for a fixed problem size.

• Our multi GPUs approach is scalable from 1 to 60 CPU cores/ GPUs
• GPU approach is faster than corresponding CPU approach.
• Better performance than PETSc.
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GPU Experiments of PLSQR(older version of 
SPLSQR): Weak Scalability

• Weak scalability shows how the execution time varies with the number of 
cores for a fixed problem size per core. 

• Performance per CPU core or per GPU drops down a little as the number 
of cores/GPUs increases. 

• GPU approach is faster than corresponding CPU approach. 
• Better performance than PETSc.  
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Experiment: Kraken

• The figure  shows total and 
communication time for 100 
iterations of the SPLSQR, PLSQR, 
and PETSc implementations for the 
DEC3 data set from 60 to 1920 cores.

• Execution time of the SPLSQR 
algorithm is 1.7x less than PETSc at 
60 cores, and is 7.8x less at 720 
cores. 

• Communication cost for SPLSQR is 
over 50x less than either PLSQR or 
PETSc.

18



Experiment: Kraken
• The figure shows total and 

communication time for 100 
iterations of SPLSQR and PETSc
for the ANGF data set from 360 
to 19,200 cores. 

• The reduction in execution time 
for SPLSQR versus PETSc varies 
from a low of 4.3x on 360 cores 
to a high of 9.9x on 2400 cores. 

• SPLSQR algorithm significantly 
reduces communication cost 
versus PETSc by greater than a 
factor of 100x.
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Initial Experiment: Blue Waters

• Perform much larger experiment than 
Kraken.

• The figure shows preliminary result on 
EQANGF62K using BW XE nodes

• Scalable from 3200 cores to 25,600 
cores.

• Will do more experiment using XE or XK 
nodes in the future.
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Initial Experiment: Yellowstone

• Performance 
comparisons between 
ours and PETSc’s
implementations of 
the LSQR algorithm 
for 100 LSQR 
iterations of the 12K 
dataset from 2,400 to 

9,600 processors. 
• Tested on 

EQANGF125K

21



Science Impact
• Many LSQR runs are required to find the 

optimal damping coefficients. It is now 
feasible for large scale seismic 
tomographic inversion thanks to the 
improved algorithm. Top figure shows 
misfit reduction when try different 
damping coefficients.

• (a) The map shows the study area: the 
topography and major faults (thick black 
lines) of southern California. 

• (b, c, d) are perturbation maps, the red 
regions represent velocity reduction areas 
and the blue regions represent velocity 
increase areas. 

• (b) under-damping: perturbations are 
oscillated.

• (c) optimal: perturbations show many 
correlations with geological structures.

• (d) over-damping: perturbations are too 
smooth. 

22



Conclusion and Future Work

• SPLSQR algorithm utilizes particular characteristics of 
coefficient matrix that include both pseudo-dense and sparse 
components. 

• Demonstrate that the SPLSQR algorithm has scalable 
communication volume and significantly reduces 
communication cost compared with existing approaches. 

• Will utilize GPU direct technology to speed up communication 
between GPUs across network.

• Will do more large scale experiment in Blue Waters.
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