
A Scalable Parallel LSQR Algorithm for
Solving Large-Scale Linear System for
Seismic Tomography

Liqiang Wang (PI, University of Wyoming)
He Huang, En-Jui Lee, Po Chen (University of Wyoming)

John Dennis (NCAR)
Galen Arnold (NCSA)

1

LSQR in Seismic Tomography

2

• Seismic Tomography: image sub-surface of geological
structures using seismic waves.

• LSQR (Least Squares with QR factorization):
a numerical method for solving sparse linear equations
in an iterative way.
▫ Widely used in seismic tomography.
▫ Features:

Highly efficient and capable of solving different types of linear
systems for large linear inversion problems.
The estimated solution usually converges fast.

LSQR
• Solves linear systems, A×x = b,

where A is a huge sparse matrix, x is
the solution variables, and b is a
right hand side vector (constant).

• Requires loading entire matrix into
memory.

• The iterative steps of LSQR include
several basic linear algebra
operations, e.g. scale and norm and
two matrix vector multiplications
i.e., y←y +A×x and x ← x+AT×y,
where y is initially derived from
vector b.

3

Real-World Application Challenges

4

• Memory-intensive
▫ LSQR requires load the entire dataset into the memory. But the

matrix can be very huge and very sparse. The dataset could be
much larger than the above dataset depending on the geological
region of interest to calculate.

• Compute-intensive
▫ Thousands or even more of iterations. Every iteration is

compute-intensive.

• Communication-intensive
▫ Massive communication between compute nodes.

General Idea

• Propose a partitioning strategy that is based on the
special structure of the matrix. Specially, SPLSQR
(Scalable Parallel LSQR) contains a novel data
decomposition strategy that treats different components
of the matrix separately.

• SPLSQR algorithm was optimized with scalable
communication volume between a fixed and modest
number of communication neighbors.

5

Matrix Layout
• In structure seismology, the

coefficient matrix (A) is composed of
kernel (top) and damping (bottom)
component.

• Kernel: <1% rows; > 90% of
nonzeros; sparse but relatively dense
compared with damping,
unstructured.

• Damping: >99% rows; < 10% of
nonzeros; extremely sparse,
structured.

6

Major Steps of SPLSQR Algorithm Based on
MPI Programming Model
(1) Reorder damping component to minimize bandwidth.
(2) Decomposition

▫ partition kernel across columns
▫ Partition damping across rows
▫ Partition damping transpose across columns

(3) Iterative steps
• Step-1

▫ Multiply kernel with vector.
▫ Global sum partial result vector.
▫ Communicate with neighbors.
▫ Multiply damping with vector.

• Step-2
▫ Multiple kernel transpose with vector
▫ Communicate with neighbor.
▫ Multiple damping transpose with vector.

• Step-3
▫ Sum result vector.

(4) Test convergence: if false go to (3), else exit and output final result.

7

Matrix Reordering
• The original damping submatrix with

big bandwidth results in huge
communication volume because there
are large overlaps between MPI tasks
after decomposition.

• Goal: move nonzeros of damping to
diagonal area to minimized
bandwidth, and thus to reduce overlap
in later parallel computation, and
reduce communication eventually.

• Perform row permutations such that
the position of leading nonzero of each
row is in descending order.

• Result: several thin bands in the
diagonal area. This structure can
reduce communication.

8

• (a) original damping
• (b) leading nonzero of (a)
• (c) result of applying row

permutation for (a)
• (d) enlargement of top of part (c),

clearly show several thin bands.

Data Decomposition

• Different colors represent different MPI tasks.
• The matrix has a kernel component (top) and a damping component

(bottom).
• In memory, store a single copy of the kernel component in compressed

sparse column (CSC), and store two copies of the damping component of
the matrix, i.e., one copy of the original in compressed sparse row (CSR)
and one copy of the transposed matrix in CSC, .

• Kernel component of the matrix is partitioned by columns, while the
damping component of the matrix is partitioned by rows. The transposed
damping matrix uses the same partitioning as the kernel component.

9

10

Parallel Computation: y←y +A×x
MPI Allreduce on

relative small
vectors

1. Each task multiplies its local piece of kernel Aki with local piece of xi

and yields its kernel part of vector, yki ..

2. A reduction across all tasks is performed on yki to combine the
partial results (black).

Parallel Computation: x ← x+AT×y

11

1. Each task multiplies its local AkT
i with yk to construct xki.

Communication

• MPI_Allreduce on kernel part of vector y, vector length
= number of row in kernel which is trivial compared with
the whole matrix.

• Local task compares local vector with required extended
vector and decides which neighbors it needs to
communicate.

• Communication is scalable:
▫ larger core -> less overlaps with neighbors -> less

communication volume.

12

Optimization: Load Balance
• The figures show number of nonzeros in each MPI task (processor).
• Left: Nonzeros in kernel is not evenly distributed. So evenly

partition columns results in load imbalance.
• Middle: Strategy: uneven column partition that makes each MPI

task has similar data load (number of nonzeros). However, perfect
load balance result in uneven partition of vector, and thus result in
communication imbalance.

• Right: Trade-off between computation load and communication
load. Set max_nonzero/avg_nonzero=1.30

13

max_nonzero/avg_nonzero=6.71 max_nonzero/avg_nonzero=1.00 max_nonzero/avg_nonzero=1.30

Optimization: GPU
• All steps in the major iterative

steps (yellow) are ported to GPU.
• The initialization steps are the

same as the CPU version except
• Memory copy from host to device

before the main iterative steps.
• Memory copy from device to host

after the main iterative steps.
• CUDA enabled cuBLAS library:

compute scale and norm
operations on vectors;

• CUDA enabled cuSPARSE
library: compute SpMV: y←y
+A×x and x ← x+AT×y;

• Write own kernels for others.

14

Initial Experiment on GPU
• Single GPU performance comparison in BW XK node.
• Need more allocation to test performance on large-scale GPUs.

15

0

2

4

6

8

10

12

1 CPU core 16 CPU cores 1 GPU (NVIDIA GK110)

ti
m

e
(s

ec
)

time

GPU Experiments of PLSQR(older version of
SPLSQR): Strong Scalability

• Strong scalability defines how the execution time varies with the number
of cores for a fixed problem size.

• Our multi GPUs approach is scalable from 1 to 60 CPU cores/ GPUs
• GPU approach is faster than corresponding CPU approach.
• Better performance than PETSc.

16

GPU Experiments of PLSQR(older version of
SPLSQR): Weak Scalability

• Weak scalability shows how the execution time varies with the number of
cores for a fixed problem size per core.

• Performance per CPU core or per GPU drops down a little as the number
of cores/GPUs increases.

• GPU approach is faster than corresponding CPU approach.
• Better performance than PETSc.

17

Experiment: Kraken

• The figure shows total and
communication time for 100
iterations of the SPLSQR, PLSQR,
and PETSc implementations for the
DEC3 data set from 60 to 1920 cores.

• Execution time of the SPLSQR
algorithm is 1.7x less than PETSc at
60 cores, and is 7.8x less at 720
cores.

• Communication cost for SPLSQR is
over 50x less than either PLSQR or
PETSc.

18

Experiment: Kraken
• The figure shows total and

communication time for 100
iterations of SPLSQR and PETSc
for the ANGF data set from 360
to 19,200 cores.

• The reduction in execution time
for SPLSQR versus PETSc varies
from a low of 4.3x on 360 cores
to a high of 9.9x on 2400 cores.

• SPLSQR algorithm significantly
reduces communication cost
versus PETSc by greater than a
factor of 100x.

19

Initial Experiment: Blue Waters

• Perform much larger experiment than
Kraken.

• The figure shows preliminary result on
EQANGF62K using BW XE nodes

• Scalable from 3200 cores to 25,600
cores.

• Will do more experiment using XE or XK
nodes in the future.

20

0

5

10

15

20

25

30

35

40

45

50

3200 6400 9600 12800 25600

ti
m

e
(s

ec
)

number of MPI tasks

LSQR execution time

Initial Experiment: Yellowstone

• Performance
comparisons between
ours and PETSc’s
implementations of
the LSQR algorithm
for 100 LSQR
iterations of the 12K
dataset from 2,400 to

9,600 processors.
• Tested on

EQANGF125K

21

Science Impact
• Many LSQR runs are required to find the

optimal damping coefficients. It is now
feasible for large scale seismic
tomographic inversion thanks to the
improved algorithm. Top figure shows
misfit reduction when try different
damping coefficients.

• (a) The map shows the study area: the
topography and major faults (thick black
lines) of southern California.

• (b, c, d) are perturbation maps, the red
regions represent velocity reduction areas
and the blue regions represent velocity
increase areas.

• (b) under-damping: perturbations are
oscillated.

• (c) optimal: perturbations show many
correlations with geological structures.

• (d) over-damping: perturbations are too
smooth.

22

Conclusion and Future Work

• SPLSQR algorithm utilizes particular characteristics of
coefficient matrix that include both pseudo-dense and sparse
components.

• Demonstrate that the SPLSQR algorithm has scalable
communication volume and significantly reduces
communication cost compared with existing approaches.

• Will utilize GPU direct technology to speed up communication
between GPUs across network.

• Will do more large scale experiment in Blue Waters.

23

