
Cray Programming Environment
on Blue Waters

Luiz DeRose
Sr. Principal Engineer

Programming Environments Director
Cray Inc.

February 2013 Luiz DeRose - Cray Inc © 2013
1

Cray Programming Environment Mission

 It is the role of the Programming Environment to close the gap

between observed performance and achievable performance

 Provide a tightly coupled
programming environment
with compilers, libraries, and
tools that will hide the
complexity of the system

• Address issues of scale and
complexity of HPC systems

• Target ease of use with
extended functionality and
increased automation

• Close interaction with users
For feedback targeting

functionality enhancements

application

information

Runtime

Information

 Export/Import

Program

Analyses
 Performance

Analysis

Queries for

Application

Optimization

Compiler

information

Static Analysis

Compiler

Applications

Performance Overview

Performance

Problem

Analyzer

February 2013
2

Luiz DeRose - Cray Inc © 2013

Cray Programming Environment
Focus on Performance and Productivity

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

Cray Adaptive
FFTs (CRAFFT)

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

3rd Party
Compilers

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 3.0

• OpenACC

Programming
Languages

Fortran

C

C++

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

DDT

lgdb

Modules

Debugging Support

Tools

•Abnormal
Termination
Processing

Performance Analysis

STAT

Scoping Analysis

Reveal

February 2013
3

Luiz DeRose - Cray Inc © 2013

Q2 Q3 Q4

2012

Q1

2013

Q1 Q2 Q3 Q4

2014

Q1 Q2 Q3 Q4

Erie

Kepler
Geneva Fremont

 Pre-Release
Hiawatha

Geneva

Up 2
Itasca

Erie

Up 1

SNB

Geneva

Up 1

Cray Programming Environment Roadmap

Cray Performance Measurement & Analysis Tools

Cray Compiling Environment

Cray Scientific & Math Libraries

Cray Debugging Support Tools

Cray Message Passing Toolkit

▼2.0 ▼2.2

▼5.6 ▼5.6.2 ▼5.5 ▼6.1 ▼6.2

▼2.3 ▼2.1 ▼1.5

MPT

CPMAT

CSML

CDST

▼6.3 ▼6.4 ▼6.5

▼2.4 ▼2.5

▼8.1 ▼8.1.2 ▼8.2 ▼8.1 CCE ▼8.3 ▼8.4 ▼8.1.9

▼6.0

▼6.0 ▼6.1 ▼5.3.2 ▼6.2 ▼6.3 ▼6.4 ▼6.2.x ▼6.1.x

▼6.2 ▼7.0 ▼6.1 ▼7.1 ▼7.2 ▼7.3 ▼7.4

February 2013
4

Luiz DeRose - Cray Inc © 2013

The Cray Compiling Environment

● Cray technology focused on scientific applications
● Takes advantage of automatic vectorization

● Takes advantage of automatic shared memory parallelization

● PGAS languages (UPC & Fortran Coarrays) fully
optimized and integrated into the compiler
● UPC 1.2 and Fortran 2008 coarray support

● No preprocessor involved

● Target the network appropriately

● Full debugger support with Allinea‟s DDT

● Standard conforming languages and programming
models
● Fortran 2008 standard compliant

● C++98/2003 compliant (working on C++11)

● OpenACC 1.0 (working on OpenACC 2.0)

● OpenMP 3.1 compliant (working on OpenMP 4.0)

February 2013
5

Luiz DeRose - Cray Inc © 2013

Cray MPI & Cray SHMEM

● MPI
● Implementation based on MPICH2 from ANL
● Optimized Remote Memory Access (one-sided) fully supported

including passive RMA
● Full MPI-2 support with the exception of

● Dynamic process management (MPI_Comm_spawn)

● MPI3 Forum active participant

● Cray SHMEM

● Fully optimized Cray SHMEM library supported
● Cray implementation close to the T3E model
● Cray XE & XC implementation on top of the Distributed Memory

Applications API (DMAPP)

● Later enhancements include:
● Leveraging local memory access through Cross Process Memory Mapping

(XPMEM)
● Provides the ability for one process to map arbitrary portions of another local

process

● Distributed locking
● Collectives optimization

February 2013
6

Luiz DeRose - Cray Inc © 2013

Debugging on Cray Systems

● Systems with thousands of threads of execution need a new
debugging paradigm

● Cray’s focus is to build tools around traditional debuggers with

innovative techniques for productivity and scalability
● Support for traditional debugging mechanism

● RogueWave TotalView and Allinea DDT

● Scalable Solutions based on MRNet from University of Wisconsin
● STAT - Stack Trace Analysis Tool

● Scalable generation of a single, merged, stack backtrace tree
● ATP - Abnormal Termination Processing

● Scalable analysis of a sick application, delivering a STAT tree and a minimal, comprehensive,
core file set.

● lgdb 2.0

● Ability to see data from multiple processors in the same instance of lgdb
● without the need for multiple windows

● Comparative debugging
● A data-centric paradigm instead of the traditional control-centric paradigm
● Collaboration with Monash University and University of Wisconsin for scalability

● Fast Track Debugging

● Debugging optimized applications
● Added to Allinea's DDT 2.6 (June 2010)

February 2013
7

Luiz DeRose - Cray Inc © 2013

● From performance measurement to performance analysis

● Assist the user with application performance analysis and
optimization
● Help user identify important and meaningful information from

potentially massive data sets

● Help user identify problem areas instead of just reporting data

● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Automatic program instrumentation

● Automatic analysis

● Target scalability issues in all areas of tool development

Cray Performance Analysis Tools

February 2013
8

Luiz DeRose - Cray Inc © 2013

Cray Adaptive Scientific Libraries

● Scientific Libraries today have three concentrations to
increase productivity with enhanced performance
● Standardization

● Autotuning

● Adaptive Libraries

● Cray adaptive model
● Runtime analysis allows best library/kernel to be used dynamically

● Extensive offline testing allows library to make decisions or remove
the need for those decisions

● Decision depends on the system, on previous performance info,
obtained previously, and characteristics of calling problem

● What makes Cray libraries special:
● Node performace

● Network performance

● Highly adaptive software

February 2013

9
Luiz DeRose - Cray Inc © 2013

Environment Setup

February 2013
10

Luiz DeRose - Cray Inc © 2013

● The Cray systems use modules in the user environment to support
multiple software versions and to create integrated software packages

● As new versions of the supported software and associated man pages become

available, they are added automatically to the Programming Environment, while
earlier versions are retained to support legacy applications

● The modules tool is used to handle different versions of packages. You can use
the default version of a product, or choose another version
● e.g.: module load compiler_v1
● e.g.: module swap compiler_v1 compiler_v2
● e.g.: module load perftools

● Modules take care of changing of PATH, MANPATH,

LM_LICENSE_FILE,
● Modules also provide a simple mechanism for updating certain environment

variables, such as PATH, MANPATH, and LD_LIBRARY_PATH
● In general, you should make use of the modules system rather than embedding

specific directory paths into your startup files, makefiles, and scripts

● It is also easy to setup your own modules for your own software

Environment Setup

February 2013
11

Luiz DeRose - Cray Inc © 2013

module list

derose@jyc1:~> module list

Currently Loaded Modulefiles:

 1) modules/3.2.6.7

 2) nodestat/2.2-1.0401.37252.2.1.gem

 3) sdb/1.0-1.0401.38148.4.27.gem

 4) MySQL/5.0.64-1.0000.5053.22.1

 5) lustre-cray_gem_s/1.8.6_2.6.32.59_0.7.1_1.0401.6845.9.1-1.0401.40514.13.1

 6) udreg/2.3.2-1.0401.5929.3.3.gem

 7) ugni/4.0-1.0401.5928.9.5.gem

 8) gni-headers/2.1-1.0401.5675.4.4.gem

 9) dmapp/3.2.1-1.0401.5983.4.5.gem

 10) xpmem/0.1-2.0401.36790.4.3.gem

 11) hss-llm/7.0.0

 12) Base-opts/1.0.2-1.0401.35378.1.3.gem

 13) craype-network-gemini

 14) xt-asyncpe/5.17

 15) cce/8.1.5.102

 16) xt-libsci/12.0.00

 17) pmi/4.0.1-1.0000.9421.73.3.gem

 18) rca/1.0.0-2.0401.38656.2.2.gem

 19) atp/1.6.1

 20) PrgEnv-cray/4.1.40

 21) moab/7.1.3-r3-b12-SUSE11

 22) torque/4.1.5-snap.201301211739

 23) xtpe-interlagos

 24) cray-mpich2/5.6.1

 25) java/jdk1.6.0_24

 26) globus/5.2.0

 27) altd/altd

 28) scripts

 29) user-paths

The Base-opts modules is loaded by

default into your user environment

You should

never unload the Base-opts module

it contains the setup for CLE

February 2013
12

Luiz DeRose - Cray Inc © 2013

derose@jyc1:~> module show xtpe-interlagos

/opt/cray/xt-asyncpe/default/modulefiles/xtpe-interlagos:

conflict xtpe-barcelona

conflict xtpe-quadcore

conflict xtpe-shanghai

conflict xtpe-istanbul

conflict xtpe-interlagos-cu

conflict xtpe-mc8

conflict xtpe-mc12

conflict xtpe-xeon

prepend-path PE_PRODUCT_LIST XTPE_INTERLAGOS

setenv XTPE_INTERLAGOS_ENABLED ON

setenv CRAY_CPU_TARGET interlagos

setenv INTEL_PRE_COMPILE_OPTS -msse3

What is xtpe-arch?

I should build for

the right compute-

node architecture

It’d probably be a really

bad idea to load two

architectures at once

February 2013
13

Luiz DeRose - Cray Inc © 2013

● module avail [avail-options] [path...]
● List all available modulefiles in the current MODULEPATH

● Useful options for filtering

● -U, --usermodules
● List all modulefiles of interest to a typical user

● -D, --defaultversions

● List only default versions of modulefiles with multiple available versions

● -P, --prgenvmodules
● List all PrgEnv modulefiles

● -T, --toolmodules

● List all tool modulefiles

● -L, --librarymodules
● List all library modulefiles

● % module avail <product>

● List all <product> versions available

Which SW Products and Versions Are Available

February 2013
14

Luiz DeRose - Cray Inc © 2013

module avail -U -D

derose@jyc1:~> module avail -U -D

-------------------------- /opt/cray/gem/modulefiles ---------------------------

blcr/0.8.4-1.0401.655.4.2.gem(default)

pmi/4.0.1-1.0000.9421.73.3.gem(default)

---------------------------- /opt/cray/modulefiles -----------------------------

atp/1.6.1(default) netcdf/4.2.0(default)

cray-libsci/12.0.00(default) netcdf-hdf5parallel/4.2.0(default)

cray-mpich2/5.6.1(default) ntk/1.5.0(default)

cray-petsc/3.3.03(default) onesided/1.5.0(default)

cray-petsc-complex/3.3.03(default) papi/5.0.1(default)

cray-shmem/5.6.1(default) parallel-netcdf/1.3.1(default)

cray-tpsl/1.3.01(default) perftools/6.0.2.10548(default)

cray-trilinos/10.12.1.1(default) petsc/3.3.00(default)

cudatoolkit/5.0.35.102(default) petsc-complex/3.3.00(default)

fftw/3.3.0.1(default) tpsl/1.3.00(default)

ga/5.0.2(default) trilinos/10.12.1.0(default)

hdf5/1.8.8(default) xt-lgdb/1.5(default)

hdf5-parallel/1.8.8(default) xt-libsci/12.0.00(default)

iobuf/2.0.3(default) xt-mpich2/5.6.1(default)

libfast/1.0.9(default) xt-shmem/5.6.1(default)

libsci_acc/2.0.00.9(default)

------------------------------- /opt/modulefiles -------------------------------

PrgEnv-cray/4.1.40(default) gcc/4.7.2(default)

PrgEnv-gnu/4.1.40(default) java/jdk1.7.0_07(default)

PrgEnv-intel/4.1.40(default) mrnet/3.0.0(default)

PrgEnv-pgi/4.1.40(default) pathscale/4.0.12.1(default)

acml/5.2.0(default) petsc/3.3.00(default)

cce/8.1.5.102(default) petsc-complex/3.3.00(default)

chapel/1.4.0(default) pgi/12.10.0(default)

ddt/3.2.1_26174(default) xt-asyncpe/5.17(default)

fftw/3.3.0.1(default)

February 2013
15

Luiz DeRose - Cray Inc © 2013

Which Software Versions Are Available?

derose@jyc1:~> module avail perftools

---------------------------- /opt/cray/modulefiles ---------------------------

--

perftools/5.3.0 perftools/6.0.0

perftools/5.3.0.8395 perftools/6.0.1

perftools/5.3.1 perftools/6.0.2.10548(default)

perftools/5.3.2

derose@jyc1:~> module avail cce

------------------------------- /opt/modulefiles -----------------------------

--

cce/7.4.5 cce/8.0.7 cce/8.1.0.170

cce/8.0.0 cce/8.1.0 cce/8.1.1

cce/8.0.1 cce/8.1.0.144 cce/8.1.2

cce/8.0.2 cce/8.1.0.157 cce/8.1.3

cce/8.0.3 cce/8.1.0.160 cce/8.1.4

cce/8.0.4 cce/8.1.0.165 cce/8.1.5.102(default)

cce/8.0.5 cce/8.1.0.166

cce/8.0.6 cce/8.1.0.168

February 2013
16

Luiz DeRose - Cray Inc © 2013

What Happens When I Load a Module?

derose@jyc1:~> module show perftools

/opt/cray/modulefiles/perftools/6.0.2.10548:

setenv PERFTOOLS_VERSION 6.0.2.10548

conflict x2-craypat

conflict xt-papi

conflict papi

conflict craypat

conflict xt-craypat

conflict apprentice2

conflict cuda

conflict cudatools

module load rca

setenv PAT_BUILD_PAPI_BASEDIR /opt/cray/papi/5.0.1

setenv CHPL_CG_CPP_LINES 1

setenv PDGCS_LLVM_DISABLE_FP_ELIM 1

setenv PDGCS_DEBUG quiet,mthrd=0400

setenv PAT_REPORT_PRUNE_NAME

_cray$mt_start_,__cray_hwpc_,f_cray_hwpc_,cstart,__pat_,pat_region_,PAT_,OMP.slave_loop,slave_entry,_new_slave_entry,__libc

_start_main,_start,__start,start_thread,__wrap_,UPC_ADIO_,_upc_,upc_,__caf_,__pgas_,syscall

module-whatis Perftools - the Performance Tools module sets up environments for CrayPat, Apprentice2 and Reveal

prepend-path PATH /opt/cray/perftools/6.0.2.10548/bin

prepend-path MANPATH /opt/cray/perftools/6.0.2.10548/man

setenv CRAYPAT_LICENSE_FILE /opt/cray/perftools/craypat.lic

prepend-path CRAYLMD_LICENSE_FILE /opt/cray/perftools/craypat.lic

setenv CRAYPAT_ROOT /opt/cray/perftools/6.0.2.10548

setenv CRAYPAT_INCLUDE_OPTS $($CRAYPAT_ROOT/sbin/pat-opts INCLUDE)

setenv CRAYPAT_PRE_LINK_OPTS $($CRAYPAT_ROOT/sbin/pat-opts PRE_LINK)

setenv CRAYPAT_POST_LINK_OPTS $($CRAYPAT_ROOT/sbin/pat-opts POST_LINK)

setenv CRAYPAT_PRE_COMPILE_OPTS $($CRAYPAT_ROOT/sbin/pat-opts PRE_COMPILE)

setenv CRAYPAT_POST_COMPILE_OPTS $($CRAYPAT_ROOT/sbin/pat-opts POST_COMPILE)

setenv CRAYPAT_ROOT_FOR_EVAL /opt/cray/perftools/6.0.2.10548

setenv APP2_STATE 6.0.2.10548

setenv JH_HELPSET /opt/cray/perftools/6.0.2.10548/help/app2help.jar

setenv JH_VIEWER /opt/cray/perftools/6.0.2.10548/help/jh2_0_05/demos/bin/hsviewer.jar

prepend-path CRAY_LD_LIBRARY_PATH /opt/cray/perftools/6.0.2.10548/lib64

append-path CLASSPATH /opt/cray/perftools/6.0.2.10548/help/jh2_0_05/javahelp

append-path PE_PRODUCT_LIST PERFTOOLS

append-path PE_PRODUCT_LIST CRAYPAT

February 2013
17

Luiz DeRose - Cray Inc © 2013

Release Notes

derose@jyc1:~> module help cce/8.1.0

----------- Module Specific Help for 'cce/8.1.0' ------------------

The modulefile, cce, defines the system paths and environment
variables needed to run the Cray Compile Environment.

Type "module avail cce" to see if other versions of this product
are available on this system. Use "module switch" to change versions.

Cray Compiling Environment 8.1.0
================================
 CCE 8.1.0
 =========
 Purpose:

 The CCE 8.1.0 release provides Fortran, C, and C++ compilers for Cray XE
 and Cray XK systems.

 The Cray Compiling Environment 8.1.0 release provides the following
 key enhancements:
 - New features as specified by the 2008 Fortran standard. This compiler
 conforms to the Fortran 2008 standard (ISO/IEC 1539-1:2010).
 - Enhanced support for accelerators on Cray Systems, including complete
 support for the OpenACC Application Programming Interface, Version 1.0.
 - Performance improvements for Cray XE and Cray XK systems
 - Support for the AMD Abu Dhabi CPU
 - Support for the Intel Sandy Bridge CPU
 - Support for the NVIDIA Kepler GPU

 Additional details can be found in the:
 Cray Compiling Environment 8.1 Release Overview, S-5212-81.

February 2013
18

Luiz DeRose - Cray Inc © 2013

Release Notes (cont.)

 Bugs Closed with CCE 8.1.0 release:

 770618 Interop code segfaults with struct function result
 772194 Auto-allocate of scalar character with -ew issues bad warning
 773042 Incorrect error return from aio_write when called from CCE
 775600 Cray FORTRAN bug regarding pointers and save'd common blocks
 780519 cache benchmark performance issue on interlagos
 781285 OpenACC - PTX codegen error with perftools
 782940 Enzo code give NaN with Cray compiler when -O1, -O2 and -O3 are
 . . .

 Dependencies:

 The CCE 8.1.0 release is supported on Cray XE systems that run the Cray
 Linux Environment (CLE) operating system, version 3.1 and later and on the
 Cray XK systems that run the CLE operating system, version 4.0 UP01 and
 later.

 The Cray Compiling Environment 8.1 release requires the following
 supporting asynchronous software products:
 Cray Compiler Drivers (xt-asyncpe) 5.12 or later
 GNU GCC 4.4.4 must be installed, but must NOT be the default GCC
 PMI 3.0.0 or later
 Cray Scientific Libraries (LibSci) 11.0.00 or later

 The Cray Compiling Environment 8.1 release requires the following minimum
 version if these products are used:
 PETSc 3.1.05 or later
 hdf5-netcdf 1.8 (HDF5 1.85 and netcdf 4.1.1)
 MPT 5.2.3 or later
 ACML 4.4.0 or later. To use ACML 5.0, gcc 4.6.1 must be installed.
 Cray Performance Measurement and Analysis Tools 5.3.0
 Cray Performance Measurement and Analysis Tools 6.0.0 is required for
 Reveal

 Known Problem:

 Bug: 788950 Static Linking warning message about "gethostbyname" with
 PMI 4.0 and CCE 8.1.0
 Currently PMI 4.0.0 has a dependency on calling "gethostbyname" for the
 application resiliency support API feature. If PMI 4.0.0 is used, the
 following message is generated when creating static executables:

February 2013
19

Luiz DeRose - Cray Inc © 2013

Using Different Compilers

● Should use PrgEnv-cray to take maximum advantage of
the Cray Programming Environment

● To access a different compiler:
● Load the corresponding Programming Environment (PE) module

● PrgEnv-cray for CCE (the default)

● PrgEnv-pgi for PGI

● PrgEnv-gnu for GNU

● Once one of these is loaded, you can then select a compiler suite
● CCE: module avail cce

● PGI: module avail pgi

● For GPU programming (CUDA, OpenACC...)
● Make sure you target the GPU when building:

● Example: module load craype-accel-nvidia35

February 2013
20

Luiz DeRose - Cray Inc © 2013

Using the Compilers

● Cray Systems come with compiler wrappers to simplify
building parallel applications (similar the mpicc/mpif90)
● Fortran Compiler: ftn

● C Compiler: cc

● C++ Compiler: CC

● Using these wrappers ensures that your code is built for
the compute nodes and linked against important libraries
● Cray MPT (MPI, Shmem, etc.)

● Cray LibSci (BLAS, LAPACK, etc.)

● …

● Do not call the PGI, Cray, etc. compilers directly

● Cray Compiler wrappers try to hide the complexities of
using the proper header files and libraries

February 2013
21

Luiz DeRose - Cray Inc © 2013

● For libraries and include files being triggered by module
files, you should NOT add anything to your Makefile
● No –lmpich is needed, nor should it be used

● no –L is needed

● Same is true for all Cray provided libraries

● You don‟t need to deal with threaded vs non threaded math libs

● If your Makefile needs an input for –L to work correctly,
 try using ‘.’

How About the –L and –l Flags

February 2013
22

Luiz DeRose - Cray Inc © 2013

The Cray Compiling Environment

February 2013
23

Luiz DeRose - Cray Inc © 2013

CCE Technology Sources

X86 Code

Generator

Cray XK Code

Generator

Fortran Front End

Interprocedural Analysis

Optimization and

Parallelization

C and C++ Source

Object File

C
o

m
p

il
e
r

C & C++ Front End

Fortran Source

C and C++ Front End supplied by Edison

Design Group, with Cray-developed code

for extensions and interface support

X86 Code Generation from LLVM, with

additional Cray-developed optimizations

and interface support

Cray Inc. Compiler

Technology

PTX Code Generatorion derived from the

Cray X2 code generator

Fortran 2008, OpenMP, and Cray-specific

programming support

Aggressive inlining and interprocedural

optimization, including cross-file

Automatic vectorization and SMP;

automatic restructuring for memory

usage; OpenMP, UPC and CAF

expansion and optimization;

heterogeneous target data transfer,

parallelization, and optimization; scalar

and vector optimization

February 2013
24

Luiz DeRose - Cray Inc © 2013

● AMD Interlagos support, including AVX, FMA, and XOP
instructions

● X86/NVIDIA compiler and library support

● OpenACC Version 1.0 support

● Full OpenMP 3.1 support

● Support for hybrid programming using MPI across node
and OpenMP within the node

● Support for IEEE floating-point arithmetic and IEEE file
formats

● Cray performance tools and debugger support

● Program Library

● CCE 8.1.0 was released on September 20, 2012
● The full release overview can be found at:

http://docs.cray.com/books/S-5212-81/

CCE Main Features

February 2013
25

Luiz DeRose - Cray Inc © 2013

http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/
http://docs.cray.com/books/S-5212-81/

UPC and Fortran Coarray Features

● C-based UPC and Fortran Coarray are PGAS language
extensions, not stand-alone languages

● A subset of Fortran coarray collectives were added for
CCE
● Although they are not yet part of the official language – they are too

useful to be delayed

● Significant improvements were made to the automatic use

of blocked network transfers, including:
● Automatic conversion of multiple single-word accesses into blocked

accesses
● Improved capabilities for pattern matching to hand-optimized library

routines, including messages stating what might be inhibiting the
conversion

● UPC and Fortran coarrays support up to 2,147,483,647

threads within a single application
● We actually did hit the previous limit of 65,535!

February 2013
26

Luiz DeRose - Cray Inc © 2013

● Roughly 35,000 nightly regression tests run for Fortran (14,000),
C (7,000), and C++ (14,000)
● Default optimization, but for multiple targets (X86, X86+AVX+FMA, X2,

X86+NVIDIA), plus “debug” and “production” compiler versions
● Additionally, cycle through “options testing” with the same test base

● Fortran: -G0, -G1, -G2, -O0, -Oipa0, -Oipa5 -hpic, “-O3,fp3” –e0
● C and C++: -Gn, -O0, -hipa0, -hipa5, -hpic, “-O3 –hfp3” -hzero
● Additional tests and suites have been added for GPU testing
● And some “stress test” option sets to create worse-case scenarios for the

compiler
● Other combinations as necessary and by request

● Performance regression testing done weekly using important

applications and benchmarks

● Functional and performance regressions typically use an
automated system that isolates the change to a specific
compiler or library mod

● Issues that are found as a result of testing but not immediately
addressed have bugs opened to track them

CCE Compiler Testing

February 2013
27

Luiz DeRose - Cray Inc © 2013

● Inlining is enabled by default
● Command line option –Oipan (ftn) –hipan (cc/CC) where n=0..4, provides

a set of choices for inlining behavior
● 0 - All inlining and cloning compiler directives are ignored

● 1 - Directive inlining. Inlining is attempted for call sites and routines that are

under the control of an inlining compiler directive.
● Cloning disabled and cloning directives are ignored

● 2 - Call nest inlining. Inline a call nest to an arbitrary depth as long as the nest
does not exceed some compiler-determined threshold.
● The expansion of the call nest must yield straight-line code (code containing no

external calls) for any expansion to occur.
● The call site must reside within the body of a loop for expansion to be attempted
● Cloning disabled and cloning directives are ignored

● 3 - Constant actual argument inlining and tiny routine inlining. Default level
for inlining
● Includes levels 1 and 2, plus any call site that contains a constant actual argument
● Cloning disabled and cloning directives are ignored

● 4 - This includes levels 1, 2, and 3, plus routine cloning is attempted if inlining
fails at a given call site. Cloning directives are enabled

● Cross language inlining is not supported

Inlining with CCE

February 2013
28

Luiz DeRose - Cray Inc © 2013

Some Cray Compilation Environment Basics

● CCE-specific features:
● Optimization: -O2 is the default and you should usually use this

● OpenMP is supported by default (no flag needed to enable)
● if you don't want it, use either -hnoomp or -xomp compiler flags

● OpenACC is supported by default if GPU targeting module (craype-
accel-nvidia*) is loaded

● CCE only gives minimal information to stderr when compiling
● To see more information, you should request a compiler listing file

● flags -ra for ftn or -hlist=a for cc

● writes a file with extension .lst

● contains annotated source listing, followed by explanatory messages

● Each message is tagged with an identifier, e.g.: ftn-6430
● to get more information on this, type: explain <identifier>

● Cray Reveal can display all this information (and more)

February 2013
29

Luiz DeRose - Cray Inc © 2013

● Use default optimization levels
● It‟s the equivalent of most other compilers –O3 or –fast
● It is also our most thoroughly tested configuration

● Using –O3,fp3 (or –O3 –hfp3, or some variation)

● -O3 only gives you slightly more than –O2
● We also test this thoroughly
● -hfp3 gives you a lot more floating point optimization, esp. 32-bit

● If an application is intolerant of floating point reassociation, try

a lower –hfp number – try –hfp1 first, only –hfp0 if absolutely
necessary
● Might be needed for tests that require strict IEEE conformance
● Or applications that have „validated‟ results from a different compiler
● Interlagos FMA usage is aggressive at –hfp2 and –hfp3; limited at –hfp1,

and disabled at –hfp0

● Do not use –Oipa5, -Oaggress, and so on – higher numbers are

not always correlated with better performance

Recommended CCE Compilation Options

February 2013
30

Luiz DeRose - Cray Inc © 2013

What Exactly Does –hfp3 Do?

● We recommend using –O3 –hfp3 if the application runs
cleanly with these options

● -hfp3 primarily improves 32-bit floating point performance
on the X86

● A partial list of what happens at –hfp3 is:
● Use of fast 32-bit inline division, reciprocal, square root, and

reciprocal square root algorithms (with some loss of precision)

● Use of a fast 32-bit inline complex absolute value algorithm

● Starting with CCE 8.0, more aggressive reassociation (pre-8.0 –hfp2
behavior)

● Various assumptions about floating point trap safety

● Somewhat more aggressive about NaN assumptions

● Assumes standard-compliant Fortran exponentiation (x**y)

February 2013
31

Luiz DeRose - Cray Inc © 2013

● Compiler can generate an filename.lst file.
● Contains annotated listing of your source code with letter indicating

important optimizations

Loopmark: Compiler Feedback

%%% L o o p m a r k L e g e n d %%%

Primary Loop Type Modifiers

------- ---- ---- ---------

 a - vector atomic memory operation

A - Pattern matched b – blocked

C - Collapsed f – fused

D - Deleted i – interchanged

E - Cloned m - streamed but not partitioned

I - Inlined p - conditional, partial and/or computed

M - Multithreaded r – unrolled

P - Parallel/Tasked s – shortloop

V - Vectorized t - array syntax temp used

W - Unwound w - unwound

February 2013
32

Luiz DeRose - Cray Inc © 2013

● ftn –rm … or cc –hlist=m …

Example: Cray loopmark Messages

29. b-------< do i3=2,n3-1

30. b b-----< do i2=2,n2-1

31. b b Vr--< do i1=1,n1

32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)

34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)

35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)

36. b b Vr--> enddo

37. b b Vr--< do i1=2,n1-1

38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)

39. b b Vr * - a(0) * u(i1,i2,i3)

40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))

41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))

42. b b Vr--> enddo

43. b b-----> enddo

44. b-------> enddo

February 2013
33

Luiz DeRose - Cray Inc © 2013

Example: Cray loopmark messages (cont)

 ftn-6289 ftn: VECTOR File = resid.f, Line = 29

 A loop starting at line 29 was not vectorized because a recurrence was found

on "U1" between lines 32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 29

 A loop starting at line 29 was blocked with block size 4.

ftn-6289 ftn: VECTOR File = resid.f, Line = 30

 A loop starting at line 30 was not vectorized because a recurrence was found

on "U1" between lines 32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30

 A loop starting at line 30 was blocked with block size 4.

ftn-6005 ftn: SCALAR File = resid.f, Line = 31

 A loop starting at line 31 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 31

 A loop starting at line 31 was vectorized.

ftn-6005 ftn: SCALAR File = resid.f, Line = 37

 A loop starting at line 37 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 37

 A loop starting at line 37 was vectorized.

February 2013
34

Luiz DeRose - Cray Inc © 2013

Example of Explain Utility

derose@jyc1:~> explain ftn-6289

VECTOR: A loop starting at line %s was not vectorized because a recurrence

was found on "var" between lines num and num.

Scalar code was generated for the loop because it contains a linear

recurrence. The following loop would cause this message to be issued:

 DO I = 2,100

 B(I) = A(I-1)

 A(I) = B(I)

 ENDDO

February 2013
35

Luiz DeRose - Cray Inc © 2013

● OpenMP is ON by default
● Optimizations controlled by –hthread#

● Autothreading is NOT on by default;
● -hautothread to turn on

● Modernized version of Cray X1 streaming capability

● Interacts with OpenMP directives

● If you do not want to use OpenMP and have OMP
directives in the code, make sure to shut off OpenMP at
compile time
● To shut off use –hthread0 or –xomp or –hnoomp

OpenMP

February 2013
36

Luiz DeRose - Cray Inc © 2013

● We do expect applications to be conformant to language
requirements
● This include not over-indexing arrays, no overlap between Fortran

subroutine arguments, and so on
● Applications that violate these rules may lead to incorrect results or

segmentation faults
● Note that languages do not require left-to-right evaluation of arithmetic

operations, unless fully parenthesized
● This can often lead to numeric differences between different compilers

● We are also fairly aggressive at floating point

optimizations that violate IEEE requirements
● -hfp[0-3] can control this, -hfp2 is the default, -hfp0 is close to IEEE

conformance, but has significant performance implications
● -hfp2 allows things like rewriting divisions as multiplication by

reciprocal, floating point parallel reductions, simplified complex
division algorithms, and so on

● -hfp3 can be used for most applications and is tested often

Why Are CCE’s Results Sometimes Different?

February 2013
37

Luiz DeRose - Cray Inc © 2013

● PGI
● -fast –Mipa=fast(,safe)

● If you can be flexible with precision, also try -Mfprelaxed

● Compiler feedback: -Minfo=all -Mneginfo

● man pgf90; man pgcc; man pgCC; or pgf90 -help

● GNU
● -O3 –ffast-math –funroll-loops

● Compiler feedback: -ftree-vectorizer-verbose=2

● man gfortran; man gcc; man g++

Starting Points for the other Compilers

February 2013
38

Luiz DeRose - Cray Inc © 2013

● The cc(1), CC(1), and ftn(1) man pages contain information
about the compiler driver commands

● The craycc(1), crayCC(1), and crayftn(1) man pages
contain descriptions of the Cray compiler command
options

● The pgcc(1), pgCC(1), and pgf95(1) man pages contain
descriptions of the PGI compiler command options

● The gcc(1), g++(1), and gfortran(1) man pages contain
descriptions of the GNU compiler command options

● To verify that you are using the correct version of a
compiler, use:
● -V option on a cc, CC, or ftn command with PGI and CCE
● --version option on a cc, CC, or ftn command with GNU

Compiler man Pages

February 2013
39

Luiz DeRose - Cray Inc © 2013

Cray Scientific Libraries Overview

February 2013
40

Luiz DeRose - Cray Inc © 2013

What are libraries for?

● Building blocks for writing scientific applications

● Historically – allowed the first forms of code re-use

● Later – became ways of running optimized code

● These days the complexity of the hardware is very high

● Cray PE insulates the user from that complexity
● Cray module environment
● CCE
● Performance tools
● Tuned MPI libraries (+PGAS)
● Optimized Scientific libraries

● Cray scientific libraries are designed to give maximum

possible performance from Cray systems with minimum
effort

February 2013
41

Luiz DeRose - Cray Inc © 2013

What makes Cray libraries special

1. Node performance
● Highly tuned BLAS etc at the low-level

2. Network performance
● Optimize for network performance

● Overlap between communication and computation

● Use the best available low-level mechanism

● Use adaptive parallel algorithms

3. Highly adaptive software
● Using auto-tuning and adaptation, give the user the known best (or

very good) codes at runtime

4. Productivity features
● Simpler interfaces into complex software

February 2013
42

Luiz DeRose - Cray Inc © 2013

FFT

FFTW

CRAFFT

Sparse

Trilinos

PETSc

CASK

Dense
BLAS

LAPACK

ScaLAPACK

IRT

Cray Scientific Libraries – Functional View

February 2013
43

Luiz DeRose - Cray Inc © 2013

Libsci Usage

● LIbSci
● The drivers should do it all for you. Don‟t explicitly link.
● For threads, set OMP_NUM_THREADS

● Threading is used within libsci.
● If you call within parallel region, single thread used
● -Wl, -ydgemm_ reveals where the link was resolved

● FFTW

● Module load fftw (there are also wisdom files you can pick up)

● PETSc

● Module load petsc (or module load petsc-complex)
● Use as you would your normal petsc build

● Trilinos

● Module load trilinos

● CASK – no need to do anything you get free optimization

February 2013
44

Luiz DeRose - Cray Inc © 2013

Threading

● LibSci is compatible with OpenMP
● Control the number of threads to be used in your program using

OMP_NUM_THREADS
● e.g. in job script
● setenv OMP_NUM_THREADS 16
● Then run with aprun –n1 –d16

● What behavior you get from the library depends on your code

● No threading in code
● The BLAS call will use OMP_NUM_THREADS threads

● Threaded code, outside parallel region
● The BLAS call will use OMP_NUM_THREADS threads

● Threaded code, inside parallel region
● The BLAS call will use a single thread

● Threaded LAPACK works exactly the same as threaded BLAS

● Anywhere LAPACK uses BLAS, those BLAS can be threaded
● Some LAPACK routines are threaded at the higher level
● No special instructions

February 2013
45

Luiz DeRose - Cray Inc © 2013

Tuning Requests

● CrayBLAS is an auto-tuned library

● Generally, excellent performance is possible for all shapes and sizes

● However, even the adaptive CrayBLAS can be improved
by tuning for exact sizes and shapes

● Send your specific tuning requirements to

 crayblas@cray.com

● Just send the routine name, and the list of calling
sequences

February 2013
46

Luiz DeRose - Cray Inc © 2013

mailto:crayblas@cray.com

ScaLAPACK

● ScaLAPACK in libsci is optimized for the Gemini
interconnect

● New collective communication procedures are added

● Default topologies are changed to use the new optimizations

● Much better strong scaling

● It also benefits from the optimizations in CrayBLAS

● IRT can provide further improvements

February 2013
47

Luiz DeRose - Cray Inc © 2013

Iterative Refinement Toolkit

● Mixed precision can yield a big win on x86 machines.

● SSE (and AVX) units issue double the number of single
precision operations per cycle.

● On CPU, single precision is always 2x as fast as double

● Accelerators sometimes have a bigger ratio
● Cell – 10x

● Older NVIDIA cards – 7x

● New NVIDIA cards (2x)

● Newer AMD cards (> 2x)

● IRT is a suite of tools to help exploit single precision
● A library for direct solvers

● An automatic framework to use mixed precision under the covers

February 2013

48
Luiz DeRose - Cray Inc © 2013

Iterative Refinement Toolkit - Library

● Various tools for solves linear systems in mixed precision

● Obtaining solutions accurate to double precision
● For well conditioned problems

● Serial and Parallel versions of LU, Cholesky, and QR

● 2 usage methods
● IRT Benchmark routines

● Uses IRT 'under-the-covers' without changing your code
● Simply set an environment variable

● Useful when you cannot alter source code

● Advanced IRT API
● If greater control of the iterative refinement process is required

● Allows

● condition number estimation

● error bounds return

● minimization of either forward or backward error

● 'fall back' to full precision if the condition number is too high

● max number of iterations can be altered by users

February 2013
49

Luiz DeRose - Cray Inc © 2013

IRT library usage

Decide if you want to use advanced API or benchmark API

 benchmark API :
 setenv IRT_USE_SOLVERS 1

 advanced API :

1. locate the factor and solve in your code (LAPACK or
ScaLAPACK)

2. Replace factor and solve with a call to IRT routine
● e.g. dgesv -> irt_lu_real_serial

● e.g. pzgesv -> irt_lu_complex_parallel

● e.g pzposv -> irt_po_complex_parallel

3. Set advanced arguments
● Forward error convergence for most accurate solution

● Condition number estimate

● “fall-back” to full precision if condition number too high

Note : “info” does not return zero when using IRT !!

February 2013

50
Luiz DeRose - Cray Inc © 2013

0

5

10

15

20

25

30

G
F

L
O

P
S

/s

Matrix DImension (M,N)

IRT with LAPACK LU DGETRF
AMD Bulldozer 2.1 GHz

2threads :: September 2012

IRT+LAPACK

LAPACK

February 2013
51

Luiz DeRose - Cray Inc © 2013

FFTW

● Cray’s main FFT library is FFTW from MIT
● Some additional optimizations for Cray hardware

● Usage is simple
● Load the module

● In the code, call an FFTW plan

● Cray’s FFTW provides wisdom files for these systems
● You can use the wisdom files to skip the plan stage

● This can be a significant performance boost

● FFTW 3.3.0.1 includes Cray optimizations for Interlagos
processors

February 2013
52

Luiz DeRose - Cray Inc © 2013

Cray Adaptive Sparse Kernel (CASK)

● Sparse matrix operations in PETSc and Trilinos on Cray
systems are optimized via CASK

● CASK is a product developed at Cray using the Cray Auto-
tuning Framework
● Offline :

● ATF program builds many thousands of sparse kernel

● Testing program defines matrix categories based on density, dimension etc

● Each kernel variant is tested against each matrix class

● Performance table is built and adaptive library constructed

● Runtime
● Scan matrix at very low cost

● Map user‟s calling sequence to nearest table match

● Assign best kernel to the calling sequence

● Optimized kernel used in iterative solver execution

February 2013
53

Luiz DeRose - Cray Inc © 2013

CASK + PETSc AMD IL

February 2013
54

Luiz DeRose - Cray Inc © 2013

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

G
F

L
O

P
S

/s
 (

h
ig

h
e

r
is

 b
e

tt
e

r)

of cores

PETSc, Linear System Solution
 2D Laplacian Problem

Weak Scalability
N=262,144 --- 268M

AMD Bulldozer 2.1G :: July 2012

PETSC-3.2-p2 (Original source)

PETSc-3.2.2 CCE(CASK)

February 2013
55

Luiz DeRose - Cray Inc © 2013

