
Performance Tools on Blue Waters

Manisha Gajbe + others

Performance Tools

•  Cray Performance Tools
•  Perfsuite (NCSA)
•  TAU

Topics
•  Cray performance tools overview
•  Steps to using the tools
•  Performance measurement on the Cray XE system
•  Using HW performance counters

o  Access to Northbridge: L3 and memory
•  Profiling applications
•  Visualization of performance data through pat_report
•  Visualization of performance data through Cray Apprentice2
•  MPI Rank Order
•  PerfSuite (NCSA)
•  TAU : Tuning and Analysis Utilities
•  Congestion Protection and Balanced Injection

4

Design Goals
Assist the user with application performance analysis
and optimization

•  Help user identify important and meaningful
information from potentially massive data sets

•  Help user identify problem areas instead of just
reporting data

•  Bring optimization knowledge to a wider set of users

Design Goals
Focus on ease of use and intuitive user interfaces

•  Automatic program instrumentation
•  Automatic analysis

Target scalability issues in all areas of tool
development

•  Data management
o  Storage, movement, presentation

Strengths
solution from instrumentation to measurement to analysis to visualization of data
•  Performance measurement and analysis on large systems

o  Automatic Profiling Analysis
o  Load Imbalance
o  HW counter derived metrics
o  Predefined trace groups provide performance statistics for libraries called by

program (blas, lapack, pgas runtime, netcdf, hdf5, etc.)
o  Observations of inefficient performance
o  Data collection and presentation filtering
o  Data correlates to user source (line number info, etc.)
o  Support MPI, SHMEM, OpenMP, UPC, CAF, OpenACC
o  Access to network counters
o  Minimal program perturbation

The Cray Performance Analysis Framework
Supports traditional post-mortem performance analysis

•  Automatic identification of performance problems
o  Indication of causes of problems
o Suggestions of modifications for performance improvement

•  pat_build: provides automatic instrumentation
•  CrayPat run-time library collects measurements (transparent to the user)
•  pat_report performs analysis and generates text reports
•  pat_help: online help utility
•  Cray Apprentice2: graphical visualization tool

•  To access software:
o  module load perftools

The Cray Performance Analysis Framework
CrayPat
•  Instrumentation of optimized code
•  No source code modification required
•  Data collection transparent to the user
•  Text-based performance reports
•  Derived metrics
•  Performance analysis
Cray Apprentice2
•  Performance data visualization tool
•  Call tree view
•  Source code mappings

10

Application Instrumentation with pat_build

•  pat_build is a stand-alone utility that instruments
the application for performance collection

•  Requires no source code or makefile modification
•  Automatic instrumentation at group (function) level

o  Groups: mpi, io, heap, math SW, …
•  Performs link-time instrumentation
•  Requires object files
•  Instruments optimized code
•  Generates stand-alone instrumented program
•  Preserves original binary

Application Instrumentation with pat_build (2)
•  Supports two categories of experiments
− asynchronous experiments (sampling) which capture

values from the call stack or the program counter at
specified intervals or when a specified counter overflows

− Event-based experiments (tracing) which count some
events such as the number of times a specific system call
is executed

•  While tracing provides most useful information, it can be very
heavy if the application runs on a large number of cores for a
long period of time

•  Sampling can be useful as a starting point, to provide a first
overview of the work distribution

Sampling with Line Number information

Where to Run Instrumented Application

•  By default, data files are written to the execution directory
•  Default behavior requires file system that supports record

locking, such as Lustre (/mnt/snx3/… , /lus/…, /scratch/
…,etc.)
-  Can use PAT_RT_EXPFILE_DIR to point to existing

directory that resides on a high-performance file system if
not execution directory

•  Number of files used to store raw data
-  1 file created for program with 1 – 256 processes
-  √n files created for program with 257 – n processes
-  Ability to customize with PAT_RT_EXPFILE_MAX

•  See intro_craypat(1) man page

CrayPat Runtime Options
•  Runtime controlled through PAT_RT_XXX environment

variables

•  Examples of control
-  Enable full trace
-  Change number of data files created
-  Enable collection of HW counters
-  Enable collection of network counters
-  Enable tracing filters to control trace file size (max

threads, max call stack depth, etc.)

Example Runtime Environment Variables

•  Optional timeline view of program available
•  export PAT_RT_SUMMARY=0 (Collect data in detail than aggregate)

•  View trace file with Cray Apprentice2

•  Request hardware performance counter information:

•  export PAT_RT_HWPC=<HWPC Group>
•  export PAT_RT_ACCPC=<HWPC Group>
•  Can specify events or predefined groups

•  blas Basic Linear Algebra subprograms
•  caf Co-Array Fortran (Cray CCE compiler only)
•  hdf5 manages extremely large data collection
•  heap dynamic heap
•  io includes stdio and sysio groups
•  lapack Linear Algebra Package
•  math ANSI math
•  mpi MPI
•  omp OpenMP API
•  pthreads POSIX threads
•  shmem SHMEM
•  sysio I/O system calls
•  system system calls
•  upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see pat_build(1) man page

Predefined Trace Wrappers (-g tracegroup)

Example Experiments
•  > pat_build –O apa

•  Gets you top time consuming routines
•  Lightest-weight sampling

•  > pat_build –u –g mpi ./my_program
•  Collects information about user functions and MPI

•  > pat_build –w ./my_program
•  Collections information for MAIN
•  Lightest-weight tracing

•  > pat_build –g netcdf,mpi ./my_program
•  Collects information about netcdf routines and MPI

pat_report

•  Combines information from binary with raw
performance data

•  Performs analysis on data
•  Generates text report of performance results
•  Generates customized instrumentation template for

automatic profiling analysis
•  Formats data for input into Cray Apprentice2

20

Why Should I generate a “.ap2” file?

•  The “.ap2” file is a self contained compressed
performance file

•  Normally it is about 5 times smaller than the “.xf”
file

•  Contains the information needed from the
application binary
o  Can be reused, even if the application binary is no longer available

or if it was rebuilt

•  It is the only input format accepted by Cray
Apprentice2

Program Instrumentation - Automatic Profiling
Analysis

•  Automatic profiling analysis (APA)
o Provides simple procedure to instrument and collect

performance data for novice users
o  Identifies top time consuming routines
o Automatically creates instrumentation template

customized to application for future in-depth
measurement and analysis

Steps to Collecting Performance Data
•  Access performance tools software

 % module load perftools

•  Build application keeping .o files (CCE: -h keepfiles)

 % make clean ; make

•  Instrument application for automatic profiling analysis
o  You should get an instrumented program a.out+pat

 % pat_build –O apa a.out

•  Run application to get top time consuming routines
 % aprun … a.out+pat (or qsub <pat script>)

Steps to Collecting Performance Data (2)

•  You should get a performance file (“<sdatafile>.xf”) or
multiple files in a directory <sdatadir>

•  Generate report and .apa instrumentation file

% pat_report <sdatafile>.xf > sampling_report

% pat_report –o sampling_report
[<sdatafile>.xf | <sdatadir>]

•  Inspect .apa file and sampling report
•  Verify if additional instrumentation is needed

Generating Profile from APA
•  Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

•  Run application

% aprun … a.out+apa (or qsub <apa script>)

•  Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf |
<datadir>]

•  View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

26

PAPI Predefined Events
•  Common set of events deemed relevant and useful for application

performance tuning
•  Accesses to the memory hierarchy, cycle and instruction counts, functional

units, pipeline status, etc.
•  The “papi_avail” utility shows which predefined events are available on the

system – execute on compute node
•  PAPI also provides access to native events

•  The “papi_native_avail” utility lists all AMD native events available on the
system – execute on compute node

•  PAPI uses perf_events Linux subsystem
•  Information on PAPI and AMD native events

•  pat_help counters
•  man intro_papi (points to PAPI documentation: http://icl.cs.utk.edu/papi/)
•  http://lists.eecs.utk.edu/pipermail/perfapi-devel/2011-January/004078.html

Hardware Counters Selection
•  HW counter collection enabled with PAT_RT_HWPC

environment variable

•  PAT_RT_HWPC <set number> | <event list>
•  A set number can be used to select a group of predefined

hardware counters events (recommended)
•  CrayPat provides 23 groups on the Cray XT/XE systems
•  See pat_help(1) or the hwpc(5) man page for a list of groups

•  Alternatively a list of hardware performance counter event
names can be used

•  Hardware counter events are not collected by default

Predefined Interlagos HW Counter Groups
See pat_help -> counters -> amd_fam15h –> groups
 0: Summary with instructions metrics
 1: Summary with TLB metrics
 2: L1 and L2 Metrics
 3: Bandwidth information
 4: <Unused>
 5: Floating operations dispatched
 6: Cycles stalled, resources idle
 7: Cycles stalled, resources full
 8: Instructions and branches
 9: Instruction cache
 10: Cache Hierarchy (unsupported for IL)

Predefined Interlagos HW Counter Groups (cont’d)
 11: Floating point operations dispatched
 12: Dual pipe floating point operations dispatched
 13: Floating point operations SP
 14: Floating point operations DP
 19: Prefetchs
 20: FP, D1, TLB, MIPS
 21: FP, D1, TLB, Stalls
 22: D1, TLB, MemBW
 23: FP, D1, D2,TLB
 default: group 23

Support for L3 cache counters now available.

New HW counter groups for Interlagos (6 counters)
•  Group 20: FP, D1, TLB, MIPS

 PAPI_FP_OPS
 PAPI_L1_DCA
 PAPI_L1_DCM
 PAPI_TLB_DM
 DATA_CACHE_REFILLS_FROM_NORTHBRIDGE
 PAPI_TOT_INS

•  Group 21: FP, D1, TLB, Stalls
 PAPI_FP_OPS
 PAPI_L1_DCA
 PAPI_L1_DCM
 PAPI_TLB_DM
 DATA_CACHE_REFILLS_FROM_NORTHBRIDGE
 PAPI_RES_STL

AMD North-Bridge events

L3_CACHE_MISSES:type:core
READ_BLOCK_EXCLUSIVE, READ_BLOCK_SHARED, READ_BLOCK_MODIFY,
PREFETCH, ALL
CORE_0, CORE_1 … CORE_7, ALL_CORES

DRAM_ACCESSES:type
DCT0_PAGE_HIT, DCT0_PAGE_MISS, DCT0_PAGE_CONFLICT
same for DCT1, ALL

To see all NB events (start with craynb:::)
> aprun papi_native_avail

32

 PAPI_TLB_DM Data translation lookaside buffer misses
 PAPI_L1_DCA Level 1 data cache accesses
 PAPI_FP_OPS Floating point operations
 DC_MISS Data Cache Miss
 User_Cycles Virtual Cycles
==
USER
--
 Time% 98.3%
 Time 4.434402 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 4500.0 calls
 PAPI_L1_DCM 14.820M/sec 65712197 misses
 PAPI_TLB_DM 0.902M/sec 3998928 misses
 PAPI_L1_DCA 333.331M/sec 1477996162 refs
 PAPI_FP_OPS 445.571M/sec 1975672594 ops
 User time (approx) 4.434 secs 11971868993 cycles 100.0%Time
 Average Time per Call 0.000985 sec
 CrayPat Overhead : Time 0.1%
 HW FP Ops / User time 445.571M/sec 1975672594 ops 4.1%peak(DP)
 HW FP Ops / WCT 445.533M/sec
 Computational intensity 0.17 ops/cycle 1.34 ops/ref
 MFLOPS (aggregate) 1782.28M/sec
 TLB utilization 369.60 refs/miss 0.722 avg uses
 D1 cache hit,miss ratios 95.6% hits 4.4% misses
 D1 cache utilization (misses) 22.49 refs/miss 2.811 avg hits
==

Example: HW counter data &Derived Metrics

PAT_RT_HWPC=1
 Flat profile data
 Raw counts
 Derived metrics

33

PAT_RT_HWPC=2 (L1 and L2 Metrics)

==
USER
--
 Time% 98.3%
 Time 4.436808 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 4500.0 calls
 DATA_CACHE_REFILLS:
 L2_MODIFIED:L2_OWNED:
 L2_EXCLUSIVE:L2_SHARED 9.821M/sec 43567825 fills
 DATA_CACHE_REFILLS_FROM_SYSTEM:
 ALL 24.743M/sec 109771658 fills
 PAPI_L1_DCM 14.824M/sec 65765949 misses
 PAPI_L1_DCA 332.960M/sec 1477145402 refs
 User time (approx) 4.436 secs 11978286133 cycles 100.0%Time
 Average Time per Call 0.000986 sec
 CrayPat Overhead : Time 0.1%
 D1 cache hit,miss ratios 95.5% hits 4.5% misses
 D1 cache utilization (misses) 22.46 refs/miss 2.808 avg hits
 D1 cache utilization (refills) 9.63 refs/refill 1.204 avg uses
 D2 cache hit,miss ratio 28.4% hits 71.6% misses
 D1+D2 cache hit,miss ratio 96.8% hits 3.2% misses
 D1+D2 cache utilization 31.38 refs/miss 3.922 avg hits
 System to D1 refill 24.743M/sec 109771658 lines
 System to D1 bandwidth 1510.217MB/sec 7025386144 bytes
 D2 to D1 bandwidth 599.398MB/sec 2788340816 bytes
==

34

35

pat_report: Job Execution Information
CrayPat/X: Version 5.2.3.8078 Revision 8078 (xf 8063) 08/25/11 …

Number of PEs (MPI ranks): 16

Numbers of PEs per Node: 16

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Execution start time: Thu Aug 25 14:16:51 2011

System type and speed: x86_64 2000 MHz

Current path to data file:
 /lus/scratch/heidi/ted_swim/mpi-openmp/run/swim+pat+27472-34t.ap2

Notes for table 1:
…

pat_report: Table Notes

Notes for table 1:

 Table option:
 -O profile
 Options implied by table option:
 -d ti%@0.95,ti,imb_ti,imb_ti%,tr -b gr,fu,pe=HIDE
 Other options:
 -T

 Options for related tables:
 -O profile_pe.th -O profile_th_pe
 -O profile+src -O load_balance
 -O callers -O callers+src
 -O calltree -O calltree+src

 The Total value for Time, Calls is the sum for the Group values.
 The Group value for Time, Calls is the sum for the Function values.
 The Function value for Time, Calls is the avg for the PE values.
 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with Time% > 0.

 Percentages at each level are of the Total for the program.
 (For percentages relative to next level up, specify:
 -s percent=r[elative])

pat_report: Additional Information

…
Instrumented with:
 pat_build -gmpi -u himenoBMTxpr.x

Program invocation:
 ../bin/himenoBMTxpr+pat.x

Exit Status: 0 for 256 PEs

CPU Family: 15h Model: 01h Stepping: 2

Core Performance Boost: Configured for 0 PEs
 Capable for 256 PEs

Memory pagesize: 4096

Accelerator Model: Nvidia X2090 Memory: 6.00 GB Frequency: 1.15 GHz

Programming environment: CRAY

Runtime environment variables:
 OMP_NUM_THREADS=1
…

Sampling Output (Table 1)

Notes for table 1:

...

Table 1: Profile by Function

 Samp % | Samp | Imb. | Imb. |Group
 | | Samp | Samp % | Function
 | | | | PE='HIDE'

 100.0% | 775 | -- | -- |Total
|---
| 94.2% | 730 | -- | -- |USER
||--
|| 43.4% | 336 | 8.75 | 2.6% |mlwxyz_
|| 16.1% | 125 | 6.28 | 4.9% |half_
|| 8.0% | 62 | 6.25 | 9.5% |full_
|| 6.8% | 53 | 1.88 | 3.5% |artv_
|| 4.9% | 38 | 1.34 | 3.6% |bnd_
|| 3.6% | 28 | 2.00 | 6.9% |currenf_
|| 2.2% | 17 | 1.50 | 8.6% |bndsf_
|| 1.7% | 13 | 1.97 | 13.5% |model_
|| 1.4% | 11 | 1.53 | 12.2% |cfl_
|| 1.3% | 10 | 0.75 | 7.0% |currenh_
|| 1.0% | 8 | 5.28 | 41.9% |bndbo_
|| 1.0% | 8 | 8.28 | 53.4% |bndto_
||==
| 5.4% | 42 | -- | -- |MPI
||--
|| 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
|| 1.8% | 14 | 16.53 | 55.0% |mpi_bcast_
|| 1.7% | 13 | 5.66 | 30.7% |mpi_barrier_
|===

pat_report: Flat Profile

Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group
 | | | Time % | | Function
 | | | | | PE='HIDE'

 100.0% | 104.593634 | -- | -- | 22649 |Total
|--
| 71.0% | 74.230520 | -- | -- | 10473 |MPI
||---
|| 69.7% | 72.905208 | 0.508369 | 0.7% | 125 |mpi_allreduce_
|| 1.0% | 1.050931 | 0.030042 | 2.8% | 94 |mpi_alltoall_
||===
| 25.3% | 26.514029 | -- | -- | 73 |USER
||---
|| 16.7% | 17.461110 | 0.329532 | 1.9% | 23 |selfgravity_
|| 7.7% | 8.078474 | 0.114913 | 1.4% | 48 |ffte4_
||===
| 2.5% | 2.659429 | -- | -- | 435 |MPI_SYNC
||---
|| 2.1% | 2.207467 | 0.768347 | 26.2% | 172 |mpi_barrier_(sync)
||===
| 1.1% | 1.188998 | -- | -- | 11608 |HEAP
||---
|| 1.1% | 1.166707 | 0.142473 | 11.1% | 5235 |free
|==

pat_report: Message Stats by Caller

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function
 Bytes | Count | <16B | MsgSz | Caller
 | | Count | <64KB | PE[mmm]
 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total
|--
| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND
||---
|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9
4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15
||||===
|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3
4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5
||||===
. . .

Using L3 NB counters with CrayPat
Load CrayPat module
$ module load perftools

Compile and Instrument as usual:
$ cc -o stream stream.c
$ pat_build stream

Define counters (up to 4)
$ export PAT_RT_PERFCTR=L3_CACHE_MISSES,…

Run
$ aprun -ss –cc 0 stream+pat

Generate the report
$ pat_report –O hwpc stream+pat+2313073-25560s.xf

42

pat_report excerpts for L3

Limited derived metrics at the moment. Can be used to calculate
bandwidth to main memory.!
!
Table 3: Program HW Performance Counter Data!
!
 L3_CACHE_MISSES:ALL:CORE_0 | L3_CACHE_MISSES |Total !
 !
 207185723 | 207502576 |Total!
!
Table 2: !
!
 L3_CACHE_MISSES:ALL:CORE_0 | L3_CACHE_MISSES |PE=SHOW !
 !
 206606606 | 206887763 |Total!
|--!
| 207128361 | 207421774 |pe.0!
| 206084850 | 206353752 |pe.1!

43

44

Cray Apprentice2

•  Call graph profile
•  Communication statistics
•  Time-line view

o  Communication
o  I/O

•  Activity view
•  Pair-wise communication statistics
•  Text reports
•  Source code mapping
•  Runs on login node
•  Supported on Mac OS and

Windows also

•  Cray Apprentice2 helps identify:
o  Load imbalance
o  Excessive communication
o  Network contention
o  Excessive serialization
o  I/O Problems

45

Application Performance Summary

Statistics Overview
Switch Overview display	

Load Balance View (Aggregated from Overview)
Min, Avg, and Max
Values	

-1, +1
Std Dev
marks	

pat_report Tables in Cray Apprentice2

•  Complimentary performance data available in one place

•  Drop down menu provides quick access to most common
reports

•  Ability to easily generate different views of performance data

•  Provides mechanism for more in depth explanation of data
presented

Example of pat_report Tables in Cray Apprentice2

New	
 text	

table	
 icon	

Right	
 click	
 for	

table	

genera4on	

op4ons	

Generating New pat_report Tables

Apprentice2 Call Tree View of Sampled Data

Apprentice2 : Calltree View of Sampled Data

Call Tree View

Function	

List	

Load balance overview:	

Height ó Max time	

Middle bar ó Average time	

Lower bar ó Min time	

Yellow represents
imbalance time 	

Zoom	

Height ó exclusive time	

Width ó inclusive time	

DUH Button:	

Provides hints
for performance
tuning	

Filtered	

nodes or	

sub tree	

Call Tree Visualization

Discrete Unit of Help (DUH Button)

Load Balance View (from Call Tree)

-1, +1
Std Dev
marks	

Min, Avg, and Max
Values	

Source Mapping from Call Tree

58

Trace Overview – Additional Views
HW	
 counters	

plot	
 (counters	

in	
 4meline)	

HW	
 counters	

overview	

(counter	

histogram	
 by	

func4on)	

Mosaic	
 (shows	

communica4on	

pa@ern)	

Traffic	
 report	

(MPI	
 4meline)	

Ac4vity	
 report	

(Synchroniza4on,	

data	
 movement,	
 etc.	

over	
 4me)	

Activity Report

Mosaic View – Shows Communication Pattern

HW Counters Overview

HW Counters Plot

Traffic Report – MPI Communication Timeline

Man pages
•  intro_craypat(1)

Introduces the craypat performance tool

•  pat_build(1)
Instrument a program for performance analysis

•  pat_help(1)
Interactive online help utility

•  pat_report(1)
Generate performance report in both text and for use with GUI

•  app2 (1)
Describes how to launch Cray Apprentice2 to visualize performance data

Man pages (2)
•  hwpc(5)

•  describes predefined hardware performance counter groups

•  nwpc(5)
•  Describes predefined network performance counter groups

•  accpc(5) / accpc_k20(5)
•  Describes predefined GPU performance counter groups

•  intro_papi(3)
•  Lists PAPI event counters
•  Use papi_avail or papi_native_avail utilities to get list of events

when running on a specific architecture

67

MPI Rank Order

Is your nearest neighbor really your nearest neighbor?

And do you want them to be your nearest neighbor?

MPI Rank Placement
•  Change default rank ordering with:

•  MPICH_RANK_REORDER_METHOD

•  Settings:
•  0: Round-robin placement – Sequential ranks are placed on the next

node in the list. Placement starts over with the first node upon
reaching the end of the list.

•  1: SMP-style placement – Sequential ranks fill up each node before
moving to the next. - DEFAULT

•  2: Folded rank placement – Similar to round-robin placement except
that each pass over the node list is in the opposite direction of the
previous pass.

•  3: Custom ordering - The ordering is specified in a file named
MPICH_RANK_ORDER.

When Is Rank Re-ordering Useful?
•  Maximize on-node communication between MPI

ranks

•  Grid detection and rank re-ordering is helpful for
programs with significant point-to-point
communication

•  Relieve on-node shared resource contention by

pairing threads or processes that perform different
work (for example computation with off-node
communication) on the same node

Automatic Communication Grid Detection
•  Cray performance tools produce a custom rank order if it’s beneficial

based on grid size, grid order and cost metric

•  Heuristics available for:
•  MPI sent message statistics
•  User time (time spent in user functions) – can be used for PGAS

codes
•  Hybrid of sent message and user time)

•  Summarized findings in report

•  Available with sampling or tracing

•  Describe how to re-run with custom rank order

MPI Rank Order Observations
Table 1: Profile by Function Group and Function!
!
 Time% | Time | Imb. | Imb. | Calls |Group!
 | | Time | Time% | | Function!
 | | | | | PE=HIDE!
!
 100.0% | 463.147240 | -- | -- | 21621.0 |Total!
|--!
| 52.0% | 240.974379 | -- | -- | 21523.0 |MPI!
||---!
|| 47.7% | 221.142266 | 36.214468 | 14.1% | 10740.0 |mpi_recv!
|| 4.3% | 19.829001 | 25.849906 | 56.7% | 10740.0 |MPI_SEND!
||===!
| 43.3% | 200.474690 | -- | -- | 32.0 |USER!
||---!
|| 41.0% | 189.897060 | 58.716197 | 23.6% | 12.0 |sweep_!
|| 1.6% | 7.579876 | 1.899097 | 20.1% | 12.0 |source_!
||===!
| 4.7% | 21.698147 | -- | -- | 39.0 |MPI_SYNC!
||---!
| 4.3% | 20.091165 | 20.005424 | 99.6% | 32.0 | mpi_allreduce_(sync)!
||===!
| 0.0% | 0.000024 | -- | -- | 27.0 |SYSCALL!
|==!

MPI Rank Order Observations (2)
!
MPI Grid Detection:!
!
 There appears to be point-to-point MPI communication in a 96 X 8!

 grid pattern. The 52% of the total execution time spent in MPI!
 functions might be reduced with a rank order that maximizes!
 communication between ranks on the same node. The effect of several !

 rank orders is estimated below.!
!
 A file named MPICH_RANK_ORDER.Grid was generated along with this!
 report and contains usage instructions and the Custom rank order!

 from the following table.!
!
 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD!

 Order Bytes/PE Bytes/PE%!
 of Total!
 Bytes/PE!
!

 Custom 2.385e+09 95.55% 3!
 SMP 1.880e+09 75.30% 1!
 Fold 1.373e+06 0.06% 2!
 RoundRobin 0.000e+00 0.00% 0!

MPICH_RANK_ORDER File

The 'Custom' rank order in this file targets nodes with multi-core
processors, based on Sent Msg Total Bytes collected for:

Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi
Ap2 File: sweep3d.mpi+pat+27054-89t.ap2
Number PEs: 48
Max PEs/Node: 4

To use this file, make a copy named MPICH_RANK_ORDER, and set the
environment variable MPICH_RANK_REORDER_METHOD to 3 prior to
executing the program.

The following table lists rank order alternatives and the grid_order
command-line options that can be used to generate a new order.
…

Auto-Generated MPI Rank Order File
The 'USER_Time_hybrid'
rank order in this file
targets nodes with multi-
core!
processors, based on
Sent Msg Total Bytes
collected for:!
#!
Program: /lus/
nid00023/malice/craypat/
WORKSHOP/bh2o-demo/Rank/
sweep3d/src/sweep3d!
Ap2 File:
sweep3d.gmpi-u.ap2!
Number PEs: 768!
Max PEs/Node: 16!
#!
To use this file, make
a copy named
MPICH_RANK_ORDER, and set
the!
environment variable
MPICH_RANK_REORDER_METHOD
to 3 prior to!
executing the program.!
#!
0,532,64,564,32,572,96,54
0,8,596,72,524,40,604,24,
588!
104,556,16,628,80,636,56,
620,48,516,112,580,88,548
,120,612!
1,403,65,435,33,411,97,44
3,9,467,25,499,105,507,41

,475!
73,395,81,427,57,459,17,4
19,113,491,49,387,89,451,
121,483!
6,436,102,468,70,404,38,4
12,14,444,46,476,110,508,
78,500!
86,396,30,428,62,460,54,4
92,118,420,22,452,94,388,
126,484!
129,563,193,531,161,571,2
25,539,241,595,233,523,24
9,603,185,555!
153,587,169,627,137,635,2
01,619,177,515,145,579,20
9,547,217,611!
7,405,71,469,39,437,103,4
13,47,445,15,509,79,477,3
1,501!
111,397,63,461,55,429,87,
421,23,493,119,389,95,453
,127,485!
134,402,198,434,166,410,2
30,442,238,466,174,506,15
8,394,246,474!
190,498,254,426,142,458,1
50,386,182,418,206,490,21
4,450,222,482!
128,533,192,541,160,565,2
32,525,224,573,240,597,18
4,557,248,605!
168,589,200,517,152,629,1
36,549,176,637,144,621,20
8,581,216,613!

5,439,37,407,69,447,101,4
15,13,471,45,503,29,479,7
7,511!
53,399,85,431,21,463,61,3
91,109,423,93,455,117,495
,125,487!
2,530,34,562,66,538,98,52
2,10,570,42,554,26,594,50
,602!
18,514,74,586,58,626,82,5
46,106,634,90,578,114,618
,122,610!
135,315,167,339,199,347,2
59,307,231,371,239,379,19
1,331,247,299!
175,363,159,323,143,355,2
55,291,207,275,183,283,15
1,267,215,223!
133,406,197,438,165,470,2
29,414,245,446,141,478,23
7,502,253,398!
157,510,189,462,173,430,2
05,390,149,422,213,454,18
1,494,221,486!
130,316,260,340,194,372,1
62,348,226,308,234,380,24
2,332,250,300!
202,364,186,324,154,356,1
38,292,170,276,178,284,21
0,218,268,146!
4,535,36,543,68,567,100,5
27,12,599,44,575,28,559,7
6,607!
52,591,20,631,60,639,84,5
19,108,623,92,551,116,583

,124,615!
3,440,35,432,67,400,99,40
8,11,464,43,496,27,472,51
,504!
19,392,75,424,59,456,83,3
84,107,416,91,488,115,448
,123,480!
132,401,196,441,164,409,2
28,433,236,465,204,473,24
4,393,188,497!
252,505,140,425,212,457,1
56,385,172,417,180,449,14
8,489,220,481!
131,534,195,542,163,566,2
27,526,235,574,203,598,24
3,558,187,606!
251,590,211,630,179,638,1
39,622,155,550,171,518,21
9,582,147,614!
761,660,737,652,705,668,7
45,692,673,700,641,684,71
3,644,753,724!
729,732,681,756,721,716,7
64,676,697,748,689,657,74
0,665,649,708!
760,528,736,536,704,560,7
44,520,672,568,712,592,75
2,552,640,600!
728,584,680,624,720,512,6
96,632,688,616,664,544,60
8,656,648,576!
762,659,738,651,706,667,7
46,643,714,691,674,699,75
4,683,730,723!

722,731,763,658,642,755,7
39,675,707,650,682,715,69
8,666,690,747!
257,345,265,313,281,305,2
73,337,609,369,577,377,61
7,329,513,529!
545,297,633,361,625,321,5
85,537,601,289,553,353,59
3,521,569,561!
256,373,261,341,264,349,2
80,317,272,381,269,309,28
5,333,277,365!
352,301,320,325,288,357,3
28,304,360,312,376,293,29
6,368,336,344!
258,338,266,346,282,314,2
74,370,766,306,710,378,74
2,330,678,362!
646,298,750,322,718,354,7
58,290,734,662,686,670,72
6,702,694,654!
262,375,263,343,270,311,2
71,351,286,319,278,342,28
7,350,279,374!
294,318,358,383,359,310,2
95,382,326,303,327,367,36
6,335,302,334!
765,661,709,663,741,653,7
11,669,767,655,743,671,74
9,695,679,703!
677,727,751,693,647,701,7
17,687,757,685,733,725,71
9,735,645,759!
!

!

grid_order Utility
•  Can use grid_order utility without first running the application with the

Cray performance tools if you know a program’s data movement pattern

•  Originally designed for MPI programs, but since reordering is done by

PMI, it can be used by other programming models (since PMI is used by
MPI, SHMEM and PGAS programming models)

•  Utility available if perftools modulefile is loaded

•  See grid_order(1) man page or run grid_order with no arguments to see
usage information

Reorder Example for Bisection Bandwidth
•  Assume 32 ranks

•  Decide on row or column ordering:

•  $ grid_order –R –g 2,16
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31

•  $ grid_order –C –g 2,16
0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30

1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31

•  Since	
 rank	
 0	
 talks	
 to	
 rank	
 16,	
 and	
 not	
 with	
 rank	
 1,	
 we	
 choose	
 Row	
 ordering	

Reorder Example for Bisection Bandwidth (2)
•  Specify cell (or chunk) to make sure rank pairs live on same node (but don’t care how many pairs live on

a node)

•  $ grid_order –R –g 2,16 –c 2,1
0,16

1,17

2,18

3,19

4,20

5,21

6,22

7,23

8,24

9,25

10,26

11,27

12,28

13,29

14,30

15,31

Fills	
 a	
 Magny-­‐	

Cours	
 node	

Using New Rank Order

•  Save grid_order output to file called
MPICH_RANK_ORDER

•  Export MPICH_RANK_REORDER_METHOD=3

•  Run non-instrumented binary with and without new
rank order to check overall wallclock time for
improvement

Example Performance Results

•  Default thread ordering
•  Application 8538980 resources: utime ~126s, stime

~108s

•  Maximized on-node data movement with reordering
•  Application 8538982 resources: utime ~38s, stime

~106s

PerfSuite

PerfSuite Background

•  Active development at NCSA since 2001
•  UI/NCSA Open Source license
•  Targeted to users of all levels of expertise

o The intent is to provide an easy-to-use mechanism
for measuring application performance, and to
expose problem areas for further exploration

•  Low measurement overhead

82	

Features
•  Counting and profiling using hardware performance event

counters on CPUs, GPUs, networks, and using interval
timers

•  Executes un-modified dynamically-linked applications
•  Easy to use XML files for configuration and output

o  Easy to change the events to count/profile, just change the XML
file

•  Metadata (such as processor information, pid, memory
and time usage) stored in the output

•  Functionality available through both command-line tools
and library API

83	

Provides
•  Three performance counter-related utilities:

o  psrun - generate raw counter or statistical profiling data
from an unmodified binary

o  psprocess - pre- and post-process data
o  psinv - query events and machine information

•  Three libraries
o  libpshwpc – HardWare Performance Counter library

- This is the one that you are most likely to use, if you ever
need to

-  Insert API calls in the source code for finer control of start/
end locations

o  libperfsuite – the “core” library
o  libpshwpc_mpi – a convenience library to capture MPI calls

84	

Using PerfSuite on BW

85	

 # First, load the perfsuite module

 % module load perfsuite

 # By default, psrun does event counting on the given program,
 # then use psprocess to produce psrun’s output XML files

 % aprun -n <num> psrun -f -p myprog myprog_args
 % psprocess myprog.0.12345.nid01234.xml

 # Use a profiling config file to do profiling instead of counting

 % aprun -n <num> psrun –C -c papi_profile_cycles.xml –f –p

myprog myprog_args
 % psprocess myprog.1.67890.nid12345.xml

psinv: Processor Inventory

•  Lists information about the
characteristics of the
computer

•  This same information is also
stored in PerfSuite XML
output and is useful for later
generating derived

•  Lists available hardware
performance events

86	

titan:~3% psinv -v
System Information -
Processors: 2
Total Memory: 2007.16 MB
System Page Size: 16.00 KB

Processor Information -
Vendor: Intel
Processor family: IPF
Model (Type): Itanium
Revision: 6
Clock Speed: 800.136 MHz

Cache and TLB Information -
Cache levels: 3
Caches/TLBs: 7

Cache Details -
Level 1:
 Type: Data
 Size: 16 KB
 Line size: 32 bytes
 Associativity: 4-way set associative

 Type: Instruction
 Size: 16 KB
 Line size: 32 bytes
 Associativity: 4-way set associative

psrun: Performance Measurement

•  Hardware performance counting and profiling
with unmodified dynamically-linked
executables

•  Supports:
•  x86, x86-64, and powerpc
•  MPI and OpenMP
•  resource usage (memory, CPU time) collection
•  Both PAPI standard and CPU/GPU native events

•  Configuration = XML, Output = XML or text
•  Use “-p” for OpenMP programs, “-f” for MPI,

and “-f -p” for MPI+OpenMP programs

87	

Example Configuration
•  For counting: set “ps_hwpc_eventlist” as the XML

root element
•  For profiling: set “ps_hwpc_profile” as the XML root

element

88	

<?xml version="1.0" encoding="UTF-8" ?>
<ps_hwpc_eventlist class="PAPI">
 <ps_hwpc_event type="preset" name="PAPI_FP_OPS" />
 <ps_hwpc_event type="preset" name="PAPI_TOT_CYC" />
 <ps_hwpc_event type="preset" name="PAPI_L1_DCM" />
 <ps_hwpc_event type="preset" name="PAPI_L2_DCM" />
 <ps_hwpc_event type=“native”>NOPS_RETIRED</ps_hwpc_event>
 <ps_hwpc_event type=“native”>BACK_END_BUBBLE_ALL</ps_hwpc_event>
</ps_hwpc_eventlist>

<?xml version="1.0" encoding="UTF-8" ?>
<ps_hwpc_profile class="PAPI">
 <ps_hwpc_event type="preset" name="PAPI_BR_MSP“ threshold="100000" />

</ps_hwpc_profile>

psprocess: Text Mode (default)

89	

PerfSuite Hardware Performance Summary Report
Version : 1.0
Created : Mon Dec 30 11:31:53 AM Central Standard Time 2002
Generator : psprocess 0.5
XML Source : /u/ncsa/anyuser/performance/psrun-ia64.xml

Execution Information
===========================
Date : Sun Dec 15 21:01:20 2002
Host : user01

Processor and System Information
===========================
Node CPUs : 2
Vendor : Intel
Family : IPF
Model : Itanium
CPU Revision : 6
Clock (MHz) : 800.136
Memory (MB) : 2007.16
Pagesize (KB): 16

psprocess: Text Mode, cont’d
The reports (text or HTML)
generated by psprocess have
several sections, covering:

•  Report creation details
•  Run details
•  Machine information
•  Raw counter listings
•  Counter explanations and

index
•  Derived metrics
•  Run annotation defined by

you

Derived metrics are evaluated at
run-time and can be extended
(text mode only)

90	

Cache Information
==========================
Cache levels : 3

Level 1
Type : data
Size (KB) : 16
Linesize (B) : 32
Assoc : 4
Type : instruction
Size (KB) : 16
Linesize (B) : 32
Assoc : 4

Level 2
Type : unified
Size (KB) : 96
Linesize (B) : 64
Assoc : 6

psprocess: Text Mode, cont’d

91	

Index Description Counter Value
===
1 Conditional branch instructions mispredicted..... 4831072449
4 Floating point instructions...................... 86124489172
5 Total cycles..................................... 594547754568
6 Instructions completed........................... 1049339828741

Statistics
===
Graduated instructions per cycle................... 1.765
Graduated floating point instructions per cycle.... 0.145
Level 3 cache miss ratio (data).................... 0.957
Bandwidth used to level 3 cache (MB/s)............. 385.087
% cycles with no instruction issue................. 10.410
% cycles stalled on memory access.................. 43.139
MFLOPS (cycles).................................... 115.905
MFLOPS (wallclock)................................. 114.441

psprocess	
 Text-­‐Based	
 Profiles
	

92	

Profile Information
==
Class : PAPI
Version : 3.6.2
Event : PAPI_TOT_CYC (Total cycles)
Period : 100000
Samples : 200471
Domain : user
Run Time : 27.19 (seconds)
Min Self % : (all)

Module Summary
--
 Samples Self % Total % Module

 186068 92.82% 92.82% /home/rkufrin/apps/aspcg/aspcg
 14182 7.07% 99.89% /opt/intel/cc/9.0/lib/libguide.so
 187 0.09% 99.98% /lib/ld-2.3.6.so
 18 0.01% 99.99% /lib/tls/libc-2.3.6.so
 15 0.01% 100.00% /lib/tls/libpthread-2.3.6.so
 1 0.00% 100.00% /tmp/perfsuite/lib/libpsrun_r.so.0.0.1

File Summary
--
 Samples Self % Total % File

 154346 76.99% 76.99% /home/rkufrin/apps/aspcg/pc_jac2d_blk3.f
 14506 7.24% 84.23% /home/rkufrin/apps/aspcg/cg3_blk.f
 14505 7.24% 91.46% ??
 10185 5.08% 96.54% /home/rkufrin/apps/aspcg/matxvec2d_blk3.f
 3042 1.52% 98.06% /home/rkufrin/apps/aspcg/dot_prod2d_blk3.f
 2366 1.18% 99.24% /home/rkufrin/apps/aspcg/add_exchange2d_blk3.f
 834 0.42% 99.66% /home/rkufrin/apps/aspcg/main3.f
 687 0.34% 100.00% /home/rkufrin/apps/aspcg/cs_jac2d_blk3.f

Text-­‐based	
 profiles,	
 cont’d	

93	

Function Summary
--
 Samples Self % Total % Function

 154346 76.99% 76.99% pc_jac2d_blk3
 14506 7.24% 84.23% cg3_blk
 10185 5.08% 89.31% matxvec2d_blk3
 6937 3.46% 92.77% __kmp_x86_pause
 4711 2.35% 95.12% __kmp_wait_sleep
 3042 1.52% 96.64% dot_prod2d_blk3
 2366 1.18% 97.82% add_exchange2d_blk3

Function:File:Line Summary
--
 Samples Self % Total % Function:File:Line

 39063 19.49% 19.49% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:20
 24134 12.04% 31.52% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:19
 15626 7.79% 39.32% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:21
 15028 7.50% 46.82% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:33
 13878 6.92% 53.74% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:24
 11880 5.93% 59.66% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:31
 8896 4.44% 64.10% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:22
 7863 3.92% 68.02% matxvec2d_blk3:/home/rkufrin/apps/aspcg/matxvec2d_blk3.f:19
 7145 3.56% 71.59% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:32

PerfSuite Profiles with ParaProf and Cube3

94	

TAU’s	
 ParaProf	
 can	

display	
 PerfSuite	

profiles	
 a=er	
 being	

mapped	
 to	
 source	
 and	

stored	
 as	
 XML	

(psprocess	
 –x)	

	

Development	
 version	
 of	

psprocess	
 produces	

Cube	
 XML	
 files	
 directly	

libpshwpc: Performance Collection API

•  Call “init” once, call “start”, “read”

and “suspend” as many times as
you like. Call “stop” (supplying a
file name prefix of your choice) to
get the performance data XML
document

•  Optionally, call “shutdown”
•  Example programs demonstrating

use are installed in PerfSuite
“examples” subdirectory

•  Additional routines
ps_hwpc_numevents() and
ps_hwpc_eventnames() allow
querying current configuration

95	

C / C++
ps_hwpc_init (void)
ps_hwpc_start (void)
ps_hwpc_read (long long *values)
ps_hwpc_suspend (void)
ps_hwpc_stop (char *prefix)
ps_hwpc_shutdown (void)

Fortran
call psf_hwpc_init (ierr)
call psf_hwpc_start (ierr)
call psf_hwpc_read (integer*8

values,ierr)

call psf_hwpc_suspend (ierr)
call psf_hwpc_stop (prefix, ierr)
call psf_hwpc_shutdown (ierr)

FORTRAN API Example

96	

include 'fperfsuite.h'
call PSF_hwpc_init(ierr)
call PSF_hwpc_start(ierr)
do j = 1, n
 do i = 1, m
 do k = 1, l
 c(i,j) = c(i,j) + a(i,k)*b(k,j)
 end do
 end do
end do
call PSF_hwpc_stop('perf', ierr)
call PSF_hwpc_shutdown(ierr)

% ftn -c matmult.f -I /sw/xe/perfsuite/1.1.2/
cnl4.1_gnu4.7.2_papi5.1.0.2/include

% ftn matmult.o –L /sw/xe/perfsuite/1.1.2/cnl4.1_gnu4.7.2_papi5.1.0.2/
lib –L /opt/cray/papi/5.1.0.2/perf_events/no-cuda/lib -lpshwpc -
lperfsuite -lpapi

Java-based Performance Measurement

•  PerfSuite 1.0.0+ supports measuring
unmodified Java applications using PAPI
similar to psrun

•  Implemented using JVMTI (Java Virtual
Machine Tool Interface)

•  Usage:
java –agentlib:psjrun MyClass

•  Results are contained in XML documents that
can be post-processed using psprocess

97	

For More Information

•  PerfSuite web sites:
•  https://bluewaters.ncsa.illinois.edu/perfsuite
•  http://perfsuite.ncsa.illinois.edu

98	

TAU : Tuning and Analysis Utilities

TAU Performance System
®

•  Tuning and Analysis Utilities (18+ year project)
•  Developed at University of Oregon, Eugene
•  Performance problem solving framework for HPC

•  Integrated, scalable, flexible, portable
•  Target all parallel programming / execution paradigms

•  Integrated performance toolkit (open source)
•  Instrumentation, measurement, analysis, visualization
•  Widely-ported performance profiling / tracing system
•  Performance data management and data mining

•  Broad application use (NSF, DOE, DOD, …)

100	

Instrumentation and Sampling

•  Supports both instrumentation (direct performance
observation) and sampling (indirect perf
observation)

•  Instrumentation can be:
•  Manually insert into the source code
•  Automatically by compiler (use the “-optCompInst” option)
•  Automatically by TAU’s PDT tool (by choosing a TAU

makefile containing the “-pdt” string)
•  Supports selective instrumentation:

•  Selects the files, functions/routines, loops
•  Supports patterns: “*”, “?” (for file names), “#” (for loops)

101	

102	

Using TAU on BW

103	

•  First,	
 load	
 the	
 tau	
 module	

•  Two	
 methods	
 to	
 run	
 to	
 generate	
 TAU	
 profile	
 or	
 trace	
 files	

•  Choose	
 a	
 TAU	
 makefile	
 or	
 use	
 a	
 TAU	
 compiler	
 script,	

to	
 instrument	
 the	
 source	
 code,	
 build	
 an	
 instrumented	

executable,	
 then	
 execute	
 it	

•  Use	
 “tau_exec”	
 to	
 run	
 an	
 uninstrumented	
 executable	

•  Analyze	
 the	
 generated	
 files,	
 using	
 “pprof”	
 for	
 quick	
 text	

output,	
 or	
 “paraprof”	
 for	
 richer	
 visualiza4on	

TAU Makefiles on BW
•  To see all installed TAU versions

module avail tau
•  To load the tau module, use one of the following:

module load tau
module load tau/<specific version>

•  The TAU makefiles are located at:
/sw/xe/tau/<tau_version>/<build>/craycnl/lib/Makefile.tau-*
For example, for TAU 2.21.4 using PrgEnv-cray, they are:
/sw/xe/tau/2.21.4/cnl4.1_cray8.1.1/craycnl/lib/Makefile.tau-*

•  For an MPI+F90 application, you may want to start with
Makefile.tau-cray-mpi-pdt, which supports MPI instrumentation
& PDT for automatic source instrumentation
setenv TAU_MAKEFILE
/sw/xe/tau/2.21.4/cnl4.1_cray8.1.1/craycnl/lib/
Makefile.tau-cray-mpi-pdt

104	

Parallel Profile Analysis – pprof

105	

Parallel Profile Analysis – ParaProf

106	

HPMToolkit

MpiP

TAU

Raw files

PerfDMF
managed
(database)

Metadata

Application
Experiment

Trial

ParaProf – Flat Profile

107	

8K processors node, context, thread

Miranda
¦ hydrodynamics
¦ Fortran + MPI
¦ LLNL BG/L

For More Information

•  TAU web sites:
•  https://bluewaters.ncsa.illinois.edu/tau
•  http://tau.uoregon.edu

108	

Congestion Protection and Balanced
Injection

What is Congestion Protection?

•  Network congestion is a condition that
occurs when the volume of traffic on the
high-speed network (HSN) exceeds the
capacity to handle it.

•  To "protect" the network from data loss,
congestion protection (CP) globally
“throttles” injection bandwidth per-node.

•  If CP happens often, application
performance degrades.

110

•  At job completion you might see the following message reported to stdout:
Application 61435 network throttled: 4459 nodes throttled, 25:31:21 node-seconds!
Application 61435 balanced injection 100, after throttle 63!

•  The throttling event lasts for 20 seconds each time CP is triggered.

http://lh5.google.ca/abramsv/R9WYOKtLe1I/AAAAAAAALO4/FLefbnOq5rQ/s1600-h/495711679_52f8d76d11_o.jpg

Types of congestion events
•  There are two main forms of congestion: many-to-one and long-path.

The former is easy to detect and correct. The latter is harder to detect
and may not be correctable.

•  Many-to-one congestion occurs in some algorithms and can be
corrected. uGNI and DMAPP based codes doing All-to-one operations
are common case. See “Modifying Your Application to Avoid Gemini
Network Congestion Errors” on balanced injection section on the
portal.

•  Long-path congestion is typically due to a combination of
communication pattern and node allocation. It can also be due to a
combination of jobs running on the system.

•  We monitor for cases of congestion protection and try to determine
the most likely cause.

111

Congestion on a Shared, Torus Network

•  HSN uses dimension ordered
routing: x-then-y-then-z
between two locations on the
torus. Note that AèB≠BèA.

•  Shortest route can sometimes
cause traffic to pass through
geminis used by other jobs.

112

•  Non-convex node allocations can have traffic that passes through
geminis used by other jobs.

•  Non-local I/O traffic and Lustre striping can lead to network hot-spots.
•  We are working with Adaptive and Cray on eliminating some of the

above causes of congestion with better node allocation: shape,
location, etc.

A

B

Balanced Injection

•  Balanced Injection (BI) is a mechanism that attempts to reduce
compute node injection bandwidth in order to prevent throttling and
which may have the effect of improving application performance for
certain communication patterns.

•  BI can be applied “per-job” using an environment variable or with user
accessible API.

•  export APRUN_BALANCED_INJECTION=64
•  Can be set from 1-100 (100 = no BI).
•  There isn’t a linear relation of BI to application performance.
•  MPI-based applications have “balanced injection” enabled in

collective MPI calls that locally “throttle” injection bandwidth.

113

114

