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CELLO

Introducing Enzo-P / Cello

Our group actively develops two related parallel applications:

Enzo

Enzo: astrophysics / cosmology application

patch-based adaptive mesh refinement (AMR)

MPI or MPI/OpenMP

almost 20 years development

Enzo-P

Cello

Enzo-P / Cello: “Petascale” fork of Enzo code

“forest of octrees” AMR

Charm++ or MPI

≈ 3 years development

work in progress–AMR just coming online
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Enzo’s strengths

[ John Wise ]

Spans multiple application domains

astrophysical fluid dynamics
hydrodynamic cosmology

Rich multi-physics capabilities

fluid, particle, gravity, radiation, . . .

Extreme resolution range

34 levels of refinement by 2!

Active global development community

≈ 25 developers
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Enzo’s struggles

Memory usage

≈ 1.5KB/patch (MPI/OpenMP helps)
memory fragmentation

Mesh quality

2-to-1 constraint can be violated
asymmetric mesh for symmetric problem

Load balancing

difficulty maintaining parent-child locality

Parallel scaling

AMR overhead dominates computation

[ Tom Abel, John Wise, Ralf Kaehler ]
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Enzo’s pursuit of scalability

Enzo was born in early 1990’s

“Extreme” meant 100 processors

Continual scalability improvements

MPI/OpenMP parallelism
“neighbor-finding” algorithm
I/O optimizations

Further improvement getting harder

increasing scalability requirements
easy improvements made already

Motivates concurrent rewriting

Enzo-P “Petascale” Enzo fork
Cello AMR framework

[ Sam Skillman, Matt Turk ]
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Enzo-P / Cello design overview

Charm++ parallelism

asynchronous, data-driven
latency tolerant
dynamic load balancing
checkpoint / restart

Octree-based AMR

“forest” for root mesh
easier to implement
scalability advantages
fast neighbor-finding

Blue Waters Symposium 2013 Enzo-P / Cello 21-22 May 2013 6 / 19



CELLO

Some advantages of patch-based AMR

Flexible patch size and shape

improved refinement efficiency

Larger patches

smaller surface/volume ratio
reduced communication
amortized loop overhead

Fewer patches

reduced AMR meta-data
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Some advantages of octree-based AMR

Fixed block size and shape

simplified load balancing
dynamic memory reuse

More blocks

more parallelism available

Smaller nodes

reduced AMR meta-data

Compute only on leaf nodes

less communication
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Enzo’s AMR data structure

root patch
refinement

patch
root grid

Patches assigned to MPI processes

Refinement patches created on root patch process

Load balancing relocates refinement patches

Patch data (grid, particle) are distributed

Replicated AMR hierarchy structure
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Enzo-P / Cello’s AMR data structure

Tree BlockForest

Each block is a Charm++ chare

Blocks initially mapped to root node process

Charm++ load balances

AMR hierarchy structure is fully distributed
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Charm++ program structure

pX()

Main

ChareC

pW()

Main()

ChareA

pZ()

pY()

ChareB

pV()

A Charm++ Program

Charm++ program

Charm++ objects are chares
invoke remote entry methods
communicate via messages

Charm++ runtime system

schedules entry methods
maps chares to processors
migrates chares to balance

Additional scalability features

checkpoint / restart
sophisticated DLB strategies
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Charm++ collections of chares

Chare Array

distributed array of chares

migrateable elements

flexible indexing

Chare Group

one chare per processor (non-migrateable)

Chare Nodegroup

one chare per node (non-migrateable)
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Cello implementation options using Charm++

1. Singleton chares

unlimited hierarchy depth

tedious to program

limited Charm++ support

B B B B B B B B B B B B B B B

2. Chare array

efficient: single access

restricted hierarchy depth

BBBBBB B BB B B B B B B B

Hierarchy
H
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Charm++ entities in Enzo-P / Cello

Process P−13210

Simulation

Block

Main

“mainchare” called at program startup

Simulation chare group holds global data

Block chare array defines forest of octrees
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Control flow in Enzo-P / Cello

Current Enzo-P / Cello control flow

1 Startup

2 Initialize

3 Mesh creation

4 Ghost refresh

5 Computation

6 Mesh adaptation

Simulation

Main

Block

6.

2.

1.

3.

4.

5.
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Block chare array indexing

Octree

Forest

Block

x y z

0

31

indices

encoding

depth

Charm++ supports user-defined array indices

Default array indices are 3 integers

Cello indexing for Block arrays:

10 × 3 bits for forest indices
20 × 3 bits for the octree encoding
6 bits for the block depth

Up to 10243 array of octrees

Up to 21 octree levels

Blue Waters Symposium 2013 Enzo-P / Cello 21-22 May 2013 16 / 19



CELLO

Cello mesh generation

Begins with the forest root grid

Proceeds level-by-level

Blocks evaluate refinement criteria

if refine, create child blocks
if coarsen, notify parent block

Refine can violate 2-1 constraint

tell coarse neighbors to refine
may recurse

Quiescence detection between steps

Keep track of neighbors and
children
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Cello AMR ghost zone refresh

Intra-level refresh

1. FaceBlock loads face cells

2. Charm++ entry method send

3. FaceBlock stores ghost cells

copy

copy

send

Fine-to-coarse refresh

1. FaceBlock coarsens face cells

2. Charm++ entry method send

3. FaceBlock stores ghost cells

restrict

copy

send

Coarse-to-fine refresh

1. FaceBlock loads face cells

2. Charm++ entry method send

3. FaceBlock interpolates ghost cells

prolong

copy

send
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Summary

Enzo Enzo-P / Cello
Parallelization MPI/OpenMP Charm++

AMR patch-based tree-based
AMR structure replicated distributed
Block sizes ×1000 variation constant
Task scheduling level-parallel dependency-driven
Load balancing patch migration Charm++

Fault tolerance checkpoint/restart Charm++

http://cello-project.org

NSF PHY-1104819, AST-0808184
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