UCG-MD: efficient “ultra-coarse-
grained” molecular dynamics

John Grime
Pl: Prof. Gregory A. Voth

University of Chicago / Argonne National Laboratory

NCSA Blue Waters Symposium, May 2014

w4 THE UNIVERSITY OF 3
CHICAGO Argonne %=

“Ultra coarse grained” (UCG) models

“Ultra-coarse-grained” (UCG) model UCG
Highly coarse grained solvent free model

Coarse grained solvent free model

Atomistic solvent free model

Atomistic model with solvent Atomic model

Dama et al, J. Chem. Theory Comput., 2013, 9, 2466-2480

“Ultra coarse grained” (UCG) models

“States” in the UCG “Beads”

States within CG beads:

— physical — — chemical —

loop folding redox reaction »
hydrophobic collapse isomerization

ligand binding protonation

State-dependent CG interactions:
— physical — — chemical —
protein folding phosphorylation »
domain folding enyzmatic cleavage ‘

UCG simulations: what do we need?

Dynamic system components Low memory requirements
(significant runtime changes) (very large simulations)

UCG simulations

Dynamic load balancing Flexibility
(implicit solvent etc) (ease of modification)

Existing codes: typically one or more of the above, but not all.

UCG-MD

« Basic design principles:
— All communications nonblocking where possible (incl. collectives!)
— Parallel 10 where possible (problems with MPI1IO?)
— Internal data = flat arrays where possible (GPU, OpenCL etc)
— Portable, self-contained (C++ & MPI, some DMAPP/PAMI)
— Self profiling (automatic parallel timing/imbalance summary!)

« This talk will cover some specific details:
— Use of “template” data (enables dynamic simulation contents)
— Key memory reduction techniques (useful for very large systems)
— Load balancing (parallel efficiency)

J. M. A. Grime and G. A. Voth,
“Highly Scalable and Memory-Efficient Ultra-Coarse-Grained Molecular Dynamics Simulations”,
J. Chem. Theory Comput., 2014, 10, 423-431

Dynamic system components

« Template subunits:
— Simplest form: subunit = molecule!
— Member particle types, local topology (bonds, angles, etc)

« Template assemblies:
— Member subunit types, additional local topology

« Topology information etc generated dynamically, at runtime:
— No global bond/angle/dihedral list etc
— No global “particle indices”
— No global nonbonded exclusion lists (1-2, 1-3, etc)

As most information is generated dynamically, input files are small, simple:
simulation data can be modified extensively at runtime (add/remove
molecules, change molecular topologies and particle properties etc)

Dynamic system components

atom 0 name=al0 mass=10
atom 1 name=al mass=10
atom 2 name=a2 mass=10

register topo type=harmonic_bond name=hb
register topo type=harmonic angle name=ha

subunit 0 MySubunit
member type=a0 name=one
member type=al name=two
member type=az2 name=three

topo hb one two parameters K=1 r(0=4.6
topo hb two three parameters K=2 r0=3.6

topo ha one two three parameters K=10 theta0=180
end

assembly 0 MyAssembly
member type=MySubunit name=sl
member type=MySubunit name=s2

topo hb sl.three s2.one parameters K=1 r0=2

topo ha sl.two sl.three s2.one parameters K=10 theta0=180
end

Anatomy of a simple template definition file ...

Dynamic system components

atom 0 name=a0 mass=10
atom 1 name=al mass=10
atom 2 name=a2 mass=10

register topo type=harmonic_bond name=hb
register topo type=harmonic_angle name=ha

Define particle
types we’ll use

Define topology
> types we’ll use (with

shorthand names!)

Dynamic system components

Define a subunit,

subunit 0 MySubunit

end

member
member
member

topo hb
topo hb

topo ha

type=a0 name=one
type=al name=two
type=a2 name=three

one two parameters K=1 r0=4.6
two three parameters K=2 r0=3.6

one two three parameters K=10 theta0=180

> “MySubunit”:

180°

Dynamic system components

Define an assembly,
“MyAssembly”:

m.\
—h
assembly 0 MyAssembly
member type=MySubunit name=s1
member type=MySubunit name=s2 7
topo hb sl.three s2.one parameters K=1 r0=2-" .7 gg
topo ha sl.two sl.three s2.one parameters K=10 theta0=180 B
end

... etc

Memory use: sparse data structures

How do we know which particles are interacting?

|
Test all particles: O(N?), bad idea as N gets large! 3:’:
Verlet lists — store lists of particles close enough to ® K2
interact. Positions are temporally correlated, so lists Convention;|
reused for several timesteps. Still O(N?) to generate, but “link-cells”

cost amortized over several steps.

Improvement: Link cells used to generate Verlet lists. Map particles into a
lattice, iterate over cell neighbors in 3D. More efficient! But ...

Memory use: sparse data structures

Biological/materials systems could be multiscale over many orders of
magnitude: e.g. A > pm

| | Single particle [simulation, ry,; = 1.2 nm

3 : : :
3& ’% LAMMPS —
25 | —
® ® ucG

m 2r
O]

> 30 ——]

- 15 2 50 | _
D .# D .# 2 1 =107 11

0 ——
| | | 05 | 0 50 100]

. L/nm
Conventional Sparse 0

algorithms algorithms 0O 02 05 075 1

L/um

Even a single particle with conventional algorithms: huge memory to span
these multiple length scales. Only use memory where needed!
Rather than a “complete” flat array of link cells, we use a dynamic tree
indexed with key = (x,y,z), link cell lattice coordinate

Mouse fibroblast cells, Torsten Wittman, The Scripps Research Institute

Load balancing

Parallel MD “tightly coupled”: overall simulation rate is limited by the
CPU with the most work to do. Need to balance the workload ...

With ~uniform particle density (e.g. explicit solvent): split simulation
into equal volumes per CPU - load balancing emerges naturally

’ Input model ‘

v

’ Split work over 1 .. NCPUs ‘

’ Input model ‘

_>|

© ©0 © 00
© 00 000
© ©0 © 00
© ©0 : 000
© 00 000
© ©0: 000

»ﬁﬂ

Synchronized update
of positi ons/veloc ties

@) — Synchronized update
of positions/velocities

Final results ‘ *
’ Final results ‘

With non-uniform particle density (e.g. implicit solvent): naive use
of the same approach does not work as well - load imbalance

Load balancing

Load balancing via a Hilbert space-filling curve (SFC):

@ @)
® e
- ® o8
®e_©e
O
¢ O O
Unbalanced system Apply SFC Map particles into SFC Section SFC

Approach borrowed from astrophysics: Hilbert SFC allows reversible
mapping of 3D lattice coordinates into a 1D “curve index”. Curve is
then sectioned for roughly equal load in each section, sections then
assigned to CPUs. (Locality of data, compression, ...)

Load balancing

n,

Who to talk to: Hilbert SFC sections can be very
irregular volumes, sharing interfaces with variable
numbers of adjacent domains. Dynamic at runtime.
Each CPU therefore uses DMAPP “remote
memory access” to inform other CPUs to expect
incoming shared particle data (very efficient!)

eg: n, informs n,_; to expect communication

What to say: Hilbert SFC could potentially assign
very large spatial volumes to CPUs - with very large
surface areas. Prefilter particle data before sharing
across interfaces: communicate only that particle data
which is actually needed by the remote CPU.

eg: only some particles shared between n,_, and n,

Load balancing

Large planar CG bilayer (2 um x 2 um)
Two spherical CG bilayers (d = 125 nm)

125 nm bilayer vesicle .

/

125 nm bilayer vesicle @

Y

O

* 2 um x 2 um planar bilayer

: 5 CG beads
: 4 bonds
« 3angles

UCG algorithm scaling

1 —
4 —
8 =
16

31 —

10*
CPU cores

108

10°

Despite extremely heterogeneous particle distribution and lightweight computation
(~5x fewer pair interactions per particle vs all-atom), algorithms seem to scale to
~260,000 CPU cores on Blue Waters (at which point the DMAPP libraries failed

intermittently)

Synaptic tomogram: Zampighi et al, Biophys. J.

, 91,2910-2918

Load balancing

CG/UCG: heterogeneous interactions in the same simulation?

— Lennard-Jones, Gay-Berne, Yukawa, tabulated, ...
— Bonds, angles, dihedrals, ...

— Potentially exotic: n-body nonbonded, environmental dependence, ...

« Different CG/UCG particles could have very different
computational costs, so:

— time everything
— accumulate per-particle “cost” (travels with particles)

— Feed costs into dynamic load balancer instead of assuming uniform
cost for each particle

Load balancing: particle density vs per-particle timings

Simple 2-component system:

m — SuRE LG

Relative interaction costs:

I
=

0
N

0
%))

Normalised MD steps s’

Normalised MD steps s

O : initially use particle density (as no timings yet!)

1.7 } ' Den'sity —=—
Per-particle —=—
1.6
15+
14
13

12

11 ¢ E
1W-

Timestep / 10°

Single core

17 | " Density —=—
Per-particle —=—

Timestep / 10°

4 cores

Normalised MD steps s’

Normalised MD steps s

1.7 t
16t
15t
14 |
13t
12t
1.1 F

Den'sity —=—
Per-particle —=—

Timestep / 10°

2 cores

Density —— |
Per-particle —=— |

Timestep / 10°

8 cores

Summary

« Currently using UCG-MD on Blue Waters for:
— CG Protein self-assembly
— CG membrane dynamics / remodeling

e Future enhancements:
— GPU/CPU agnostic acceleration (OpenCL)
— Improve communications efficiency (more DMAPP/PAMI)

« Acknowledgements:
— NSF /NCSA
— Voth group (special mention to James Farris Dama!)
— Blue Waters point-of-contact: Robert Brunner

