
UCG-­‐MD:	
 efficient	
 “ultra-­‐coarse-­‐
grained”	
 molecular	
 dynamics	

John	
 Grime	

PI:	
 Prof.	
 Gregory	
 A.	
 Voth	

University	
 of	
 Chicago	
 /	
 Argonne	
 NaFonal	
 Laboratory	

NCSA	
 Blue	
 Waters	
 Symposium,	
 May	
 2014	

“Ultra coarse grained” (UCG) models

•  “Ultra-coarse-grained” (UCG) model"
•  Highly coarse grained solvent free model"
•  Coarse grained solvent free model"
•  Atomistic solvent free model"
•  Atomistic model with solvent" Atomic model!

UCG!

Dama et al, J. Chem. Theory Comput., 2013, 9, 2466-2480"

“Ultra coarse grained” (UCG) models

“States” in the UCG “Beads”!

States within CG beads:!
 — physical — — chemical —!
 loop folding redox reaction"
hydrophobic collapse isomerization"
 ligand binding " protonation"
 "
State-dependent CG interactions:!
 — physical — — chemical — !
 protein folding phosphorylation"
 domain folding enyzmatic cleavage"
" " ""

UCG simulations: what do we need?

UCG simulations!

Low memory requirements!
(very large simulations)"

Dynamic system components!
(significant runtime changes)"

Dynamic load balancing!
(implicit solvent etc)"

Flexibility!
(ease of modification)"

Existing codes: typically one or more of the above, but not all."

UCG-MD

•  Basic design principles:"
–  All communications nonblocking where possible (incl. collectives!)!
–  Parallel IO where possible (problems with MPIIO?)"
–  Internal data = flat arrays where possible (GPU, OpenCL etc)"
–  Portable, self-contained (C++ & MPI, some DMAPP/PAMI)"
–  Self profiling (automatic parallel timing/imbalance summary!)"

•  This talk will cover some specific details:"
–  Use of “template” data (enables dynamic simulation contents)"
–  Key memory reduction techniques (useful for very large systems)"
–  Load balancing (parallel efficiency)"

J. M. A. Grime and G. A. Voth,"
“Highly Scalable and Memory-Efficient Ultra-Coarse-Grained Molecular Dynamics Simulations”,"

J. Chem. Theory Comput., 2014, 10, 423-431"

Dynamic system components

•  Template subunits:!
–  Simplest form: subunit = molecule!"
–  Member particle types, local topology (bonds, angles, etc)"

•  Template assemblies:!
–  Member subunit types, additional local topology"

•  Topology information etc generated dynamically, at runtime:"
–  No global bond/angle/dihedral list etc"
–  No global “particle indices”"
–  No global nonbonded exclusion lists (1-2, 1-3, etc)"

As most information is generated dynamically, input files are small, simple:
simulation data can be modified extensively at runtime (add/remove
molecules, change molecular topologies and particle properties etc)"

Dynamic system components

atom 0 name=a0 mass=10!
atom 1 name=a1 mass=10!
atom 2 name=a2 mass=10!
!
register topo type=harmonic_bond name=hb!
register topo type=harmonic_angle name=ha!
!
subunit 0 MySubunit!

! member type=a0 name=one !
! member type=a1 name=two!
! member type=a2 name=three!

!
! topo hb one two parameters K=1 r0=4.6!
! topo hb two three parameters K=2 r0=3.6!

!
! topo ha one two three parameters K=10 theta0=180!

end!
!
assembly 0 MyAssembly!

! member type=MySubunit name=s1!
! member type=MySubunit name=s2!

!
! topo hb s1.three s2.one parameters K=1 r0=2!

!
! topo ha s1.two s1.three s2.one parameters K=10 theta0=180!

end!

Anatomy of a simple template definition file …!

Dynamic system components

atom 0 name=a0 mass=10!
atom 1 name=a1 mass=10!
atom 2 name=a2 mass=10!
!
register topo type=harmonic_bond name=hb!
register topo type=harmonic_angle name=ha!
!
subunit 0 MySubunit!

! member type=a0 name=one !
! member type=a1 name=two!
! member type=a2 name=three!

!
! topo hb one two parameters K=1 r0=4.6!
! topo hb two three parameters K=2 r0=3.6!

!
! topo ha one two three parameters K=10 theta0=180!

end!
!
assembly 0 MyAssembly!

! member type=MySubunit name=s1!
! member type=MySubunit name=s2!

!
! topo hb s1.three s2.one parameters K=1 r0=2!

!
! topo ha s1.two s1.three s2.one parameters K=10 theta0=180!

end!

Define particle
types we’ll use!

Define topology
types we’ll use (with
shorthand names!)!

Dynamic system components

atom 0 name=a0 mass=10!
atom 1 name=a1 mass=10!
atom 2 name=a2 mass=10!
!
register topo type=harmonic_bond name=hb!
register topo type=harmonic_angle name=ha!
!
subunit 0 MySubunit!

! member type=a0 name=one !
! member type=a1 name=two!
! member type=a2 name=three!

!
! topo hb one two parameters K=1 r0=4.6!
! topo hb two three parameters K=2 r0=3.6!

!
! topo ha one two three parameters K=10 theta0=180!

end!
!
assembly 0 MyAssembly!

! member type=MySubunit name=s1!
! member type=MySubunit name=s2!

!
! topo hb s1.three s2.one parameters K=1 r0=2!

!
! topo ha s1.two s1.three s2.one parameters K=10 theta0=180!

end!

Define a subunit,
“MySubunit”:!

“one”	

“two”	

“three”	

18
0°
	

Dynamic system components

atom 0 name=a0 mass=10!
atom 1 name=a1 mass=10!
atom 2 name=a2 mass=10!
!
register topo type=harmonic_bond name=hb!
register topo type=harmonic_angle name=ha!
!
subunit 0 MySubunit!

! member type=a0 name=one !
! member type=a1 name=two!
! member type=a2 name=three!

!
! topo hb one two parameters K=1 r0=4.6!
! topo hb two three parameters K=2 r0=3.6!

!
! topo ha one two three parameters K=10 theta0=180!

end!
!
assembly 0 MyAssembly!

! member type=MySubunit name=s1!
! member type=MySubunit name=s2!

!
! topo hb s1.three s2.one parameters K=1 r0=2!

!
! topo ha s1.two s1.three s2.one parameters K=10 theta0=180!

end!

Define an assembly,
“MyAssembly”:!

“one”	

“two”	

“three”	

“one”	

“two”	

“three”	

18
0°
	

“s1”!
“s2”!

… etc!

Memory use: sparse data structures

Verlet lists – store lists of particles close enough to
interact. Positions are temporally correlated, so lists

reused for several timesteps. Still O(N2) to generate, but
cost amortized over several steps."

Conventional
“link-cells”"

How do we know which particles are interacting?!

Test all particles: O(N2), bad idea as N gets large!!

Improvement: Link cells used to generate Verlet lists. Map particles into a
lattice, iterate over cell neighbors in 3D. More efficient! But …!

Memory use: sparse data structures

Biological/materials systems could be multiscale over many orders of
magnitude: e.g. Å è μm!

≈ 20 μm"

Conventional"
algorithms"

Sparse"
algorithms"

UCG

Even a single particle with conventional algorithms: huge memory to span
these multiple length scales. Only use memory where needed!!

Rather than a “complete” flat array of link cells, we use a dynamic tree
indexed with key = (x,y,z), link cell lattice coordinate"

Mouse fibroblast cells, Torsten	
 WiVman,	
 The	
 Scripps	
 Research	
 InsFtute"

Load balancing

With ~uniform particle density (e.g. explicit solvent): split simulation
into equal volumes per CPU - load balancing emerges naturally!

With non-uniform particle density (e.g. implicit solvent): naïve use
of the same approach does not work as well - load imbalance!

Input model

Split work over 1 .. N CPUs

1 2 N...

Synchronized update
of positions/velocities

Final results

Input model

Split work over 1 .. N CPUs

1

2
N...

Synchronized update
of positions/velocities

Final results

,	

Parallel MD “tightly coupled”: overall simulation rate is limited by the
CPU with the most work to do. Need to balance the workload …!

Load balancing

Load balancing via a Hilbert space-filling curve (SFC):!

Approach borrowed from astrophysics: Hilbert SFC allows reversible
mapping of 3D lattice coordinates into a 1D “curve index”. Curve is
then sectioned for roughly equal load in each section, sections then

assigned to CPUs. (Locality of data, compression, …)!

Unbalanced	
 system	
 Apply	
 SFC	
 Map	
 parFcles	
 into	
 SFC	
 SecFon	
 SFC	

Load balancing

n1

n2 n3 n4

n1 n2

n3 n4 n5

Who to talk to: Hilbert SFC sections can be very
irregular volumes, sharing interfaces with variable
numbers of adjacent domains. Dynamic at runtime.
Each CPU therefore uses DMAPP “remote
memory access” to inform other CPUs to expect
incoming shared particle data (very efficient!)"
"

eg: n1 informs n2-5 to expect communication"

What to say: Hilbert SFC could potentially assign
very large spatial volumes to CPUs - with very large
surface areas. Prefilter particle data before sharing
across interfaces: communicate only that particle data
which is actually needed by the remote CPU."
"

eg: only some particles shared between n2-4 and n1!

Load balancing

Large planar CG bilayer (2 μm x 2 μm)"
Two spherical CG bilayers (d = 125 nm)"

2 μm x 2 μm planar bilayer

125 nm bilayer vesicle

125 nm bilayer vesicle

{5 CG beads
4 bonds
3 angles

resolution (19). For computation we have used the EMAN (31) and BSOFT

(32) software packages, as well as software developed by one of the members

of our research team (S.L.). The resolution was assessed by cutting the FSC

curves with thresholds corresponding to five-times the correlation noise (33).
The second method was to measure the thickness of the unit-membrane

pattern (18). We used individual planes selected from three refined three-

dimensional maps where the pattern was visible throughout the volume. For

each map, we selected five planes and in each plane we performed 10–15
measurements using the measuring editor of the Amira package. Since there

was significant variability in the distribution of the densities comprising the

pattern, we measured regions of the plasma and vesicular membrane where
the dense layers appeared equivalent. In these regions, we measured the

distance between the centers of the layers (18). This method eliminated

the bias in selecting the boundaries of the dense layers. By comparing the

resolution between both methods, we have estimated that the resolution of
the conical tomographic reconstructions was 3–4 nm (18).

Quantifications

Using the Amira or ImageJ software packages, we measured the length of the

active zones in all reconstructions in which they were located (13 out of 19)

by measuring the length of a curve line corresponding to the length of thick
density in the postsynaptic terminal (densities colored green, Fig. 1 B). The
area of the active zone was calculated bymultiplying this length by its thickness

estimated from the number of planes in the reconstruction (each plane was

.82 nm and the average thickness of the thin sections was 476 15 nm). Only
vesicles the centers of which were contained in the reconstructed volume

were included in the count. The total number of vesicles was obtained by

examining individual planes comprising the reconstruction to insure that all

vesicles were included and none counted twice. The number of docked
vesicles was designated as the subset of the total number of vesicles that

were in direct contact or located at,15 nm from the membrane of the active

zone. The number of hemi-fused vesicles corresponds to the subset of

docked vesicles where the area of contact with the active zone was com-
prised of a single unit membrane and measured;6 nm in overall thickness.

RESULTS

Using conical electron tomography (18,19), we reconstructed
chemical synapses from the rat frontal association and motor
neocortex prepared for thin sectioning electron microscopy.
Key advantages of conical tomography include: 1), elimina-
tion of artifacts induced by projecting the entire thickness of
the thin section onto a single plane (the projection-artifact);
2), isotropic in-plane resolution (3–4 nm)—approximately two
orders-of-magnitude higher than that achieved by opticalmeth-
ods; 3), high throughput; and 4), elimination of the need to im-
pose symmetry or use averaging methods to increase signal/
noise ratios.
Of the 19 synapses reconstructed, 13maps contained active

zones. These three-dimensional maps were studied by ren-
dering their entire volume (;0.1 mm3) (Fig. 1 A), by visu-
alizing their individual planes (Figs. 2; 3, D–F; 4, D–F; and
6, A–C), and by segmenting the volumes of plasma mem-
branes and hemi-fused as well as fully fused vesicles (Figs.
1 B; 3, A–C; 4, A–C; and 5). These visualization methods
showed that the presynaptic terminal contained the charac-
teristic vesicles described in previous studies of chemical
synapses using conventional thin section electron micros-
copy (34–36). These synaptic vesicles were clustered at the

FIGURE 1 Three-dimensional map of a synapse visualized by volumetric
rendering and density segmentation. (A) The synapse is comprised of a

presynaptic (upper half) and a postsynaptic (lower half) terminal. Spherical

profiles of different diameters represent the membranous organelles in the

presynaptic terminal. The synaptic vesicles appear as small spheres that
cluster at the active zone, which itself faces a layer of density associated with

the postsynaptic plasma membrane. Other membrane-bound organelles

include a group of three coated vesicles, a coated pit (lower right side) and a
large endosome with vesicles inside the lumen (upper right corner). Docked
synaptic vesicles are closest to the membrane of the active zone. This

reconstruction has six docked vesicles. The rectangle at the center of the

panel encloses the volume of the docked vesicle that is shown in Fig. 2. The
inset shows an individual plane of another docked vesicle. To underscore

the closeness of the region of contact, the vesicle was colored red and the

plasma membrane white. The volume of the reconstruction was ;0.1 mm3

and the resolution, estimated from the unit-membrane pattern, ;4 nm. (B)
The densities of two of the different membranous organelles were extracted

(segmented) and reconstructed independently (color-coded). The parallel

white bands represent the pre- and postsynaptic plasma membranes

separated by the extracellular space. The thick brown layer associated to
the plasma membrane represents the postsynaptic densities that define the

active zone in the presynaptic terminal. The three orange particles associated

to the plasma membrane between the vesicles belong to the presynaptic

web (49–51). Depending on their distance to the active zone, the synaptic
vesicles were located at;15 nm from the active zone (docked and in red) or
deeper within the terminal (in blue). (Note that the viewing angle induces

the illusion that some of the red vesicles seem farther from the active zone
while some of the blue vesicles seem closer than the 50-nm separation.) The

organelles colored yellow outside the active zone include a coated pit, three

coated vesicles, and a large endosome with vesicles in its lumen. The

distinctive structure in conjunction with its location outside the active zone
allowed us to identify these profiles as unambiguously belonging to classical

clathrin-related retrieval apparatuses. Bar: 265 nm.

2912 Zampighi et al.

Biophysical Journal 91(8) 2910–2918

265 nm"

Despite	
 extremely	
 heterogeneous	
 parFcle	
 distribuFon	
 and	
 lightweight	
 computaFon	

(~5x	
 fewer	
 pair	
 interacFons	
 per	
 parFcle	
 vs	
 all-­‐atom),	
 algorithms	
 seem	
 to	
 scale	
 to	

~260,000	
 CPU	
 cores	
 on	
 Blue	
 Waters	
 (at	
 which	
 point	
 the	
 DMAPP	
 libraries	
 failed	

intermiVently)	

Synaptic tomogram: Zampighi et al, Biophys. J. 2006, 91, 2910-2918"

Load balancing

•  CG/UCG: heterogeneous interactions in the same simulation?"

–  Lennard-Jones, Gay-Berne, Yukawa, tabulated, …"
–  Bonds, angles, dihedrals, …"
–  Potentially exotic: n-body nonbonded, environmental dependence, …"

•  Different CG/UCG particles could have very different
computational costs, so:"

–  time everything!
–  accumulate per-particle “cost” (travels with particles)"
–  Feed costs into dynamic load balancer instead of assuming uniform

cost for each particle"

=	
 1	

≈	
 2	

≈	
 5	

Single	
 core	
 2	
 cores	

4	
 cores	
 8	
 cores	

RelaFve	
 interacFon	
 costs:	

:	
 ini;ally	
 use	
 par;cle	
 density	
 (as	
 no	
 ;mings	
 yet!)	

Load balancing: particle density vs per-particle timings

Simple	
 2-­‐component	
 system:	

•  Currently using UCG-MD on Blue Waters for:"
–  CG Protein self-assembly"
–  CG membrane dynamics / remodeling"

•  Future enhancements:"
–  GPU/CPU agnostic acceleration (OpenCL)"
–  Improve communications efficiency (more DMAPP/PAMI)"

•  Acknowledgements:"
–  NSF / NCSA"
–  Voth group (special mention to James Farris Dama!)"
–  Blue Waters point-of-contact: Robert Brunner!

Summary

