Outline

• Overview of Nearline system (HPSS)
 • Hardware
 • File system structure
• Data transfer on Blue Waters
• Globus Online (GO) interface
 • Web GUI
 • Command-Line Interface (CLI)
• Optimizing data transfers
 • Transfer parameters
 • Transfer rates
 • Transfer errors
Gemini Fabric (HSN)

<table>
<thead>
<tr>
<th>DSL 48 Nodes</th>
<th>XE6 Compute Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOM 64 Nodes</td>
<td>5,688 Blades – 22,640 Nodes – 362,240 Cores</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XK7 GPU Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>768 Blades – 3,072 Nodes</td>
</tr>
<tr>
<td>24,576 Cores – 3,072 GPUs</td>
</tr>
</tbody>
</table>

Cray XE6/XK7 - 276 Cabinets

- **Cray XE6**
 - 5,688 Blades
 - 22,640 Nodes
 - 362,240 Cores

- **Cray XK7**
 - 768 Blades
 - 3,072 Nodes
 - 24,576 Cores
 - 3,072 GPUs

Network Components

- **Boot RAID**
 - 48 Nodes
- **SDB Nodes**
 - 64 Nodes
- **RSIP Nodes**
- **Network GW Nodes**
- **Unassigned Nodes**
- **LNET Routers**
 - 582 Nodes

Additional Components

- **Sonexion**
 - 25+PB online storage
 - 144+144+1440 OSTs
- **Near-Line Storage**
 - 300+PB

Network Connectivity

- **10/40/100 Gb Ethernet Switch**
- **InfiniBand fabric**
- **Cyber Protection IDPS**
- **NCSAnet**
- **esServers Cabinets**
- **Management Node**
- **Import/Export 28 Nodes**
- **HPSS Data Mover 50 Nodes**
- **esLogin 4 Nodes**
- **Network GW Nodes**
- **LNET Routers**
- **582 Nodes**

Boot Cabinet

- **Boot RAID**
- **SMW**

SMW

- **Boot Cabinet**
- **10/40/100 Gb Ethernet Switch**

InfiniBand Fabric

- **Sonexion**
- **Near-Line Storage**
- **Cyber Protection IDPS**
- **NCSAnet**
- **esServers Cabinets**
- **Management Node**
- **Import/Export 28 Nodes**
- **HPSS Data Mover 50 Nodes**
- **esLogin 4 Nodes**
- **Network GW Nodes**
- **LNET Routers**
- **582 Nodes**

NCSAnet

NPCF

Presentation Title
Blue Waters 11-Petaflop System

36 x Sonexion 6000
Lustre 2.1: > 25PB @ > 1TB/s

28 x Dell R720 IE nodes
2 x 2.1GHz w/ 8 cores
1 x 40GbE
GridFTP access only
Mover nodes (GridFTP, RAIT)
50 x Dell R720
2 x 2.9GHz w/ 8 cores
2 x 40GbE (Bonded)
RHEL 6.3
GridFTP access only

Core Servers
2x X3580 X5
8x8 core Nehalems
RHEL 6.3

HPSS Disk Cache
4 x DDN 12k
2.4PB @ 100GB/s

6 x Spectra Logic T-Finity
12 robotic arms
360PB in 95580 slots
366 TS1140 Jaguars @ 240MB/s
HPSS File System Structure

• Your home directory
 • `/u/sciteam/<username>` (same as Lustre)
 • Default quota of 5TB; can not be increased

• Your project directories
 • `/projects/sciteam/<psn (e.g., jn0)>` (same as Lustre)
 • Default quota of 50TB; can be increased with a request through the Blue Waters ticket system

• No purge policy! Data stays for the life of your project
Data Transfer on Blue Waters

- BW Lustre ↔ HPSS
 - Use GO (Globus Online)
 - Cannot use scp and sftp
- BW (Lustre, HPSS) ↔ Outside world
 - Use GO
 - Can use scp, sftp, and rsync but DON’T!
 - Impacts login node performance
 - Slower than GO
- BW Lustre ↔ BW Lustre
 - Using cp is ok
 - GO is faster for multiple large files
 - Example: copying 50 1-GB files from /scratch to /home
 - cp: 244 sec.
 - GO: 39 sec.
Using Globus Online

- **BW Portal**
 - Documentation: https://bluewaters.ncsa.illinois.edu/data-transfer-doc
 - GO access: https://bluewaters.ncsa.illinois.edu/data

- Use Globus Connect to create local endpoints for your own computer/cluster
Globus Online Web GUI

- BW endpoints
 - ncsa#BlueWaters
 - ncsa#Nearline

- Advantages
 - Easy transfers
 - Select src/dest
 - Select files/dirs
 - Click arrow
 - Simple option selection

- Limitations
 - Some parameters inaccessible
 - 100k file max listing
 - Sometimes < full concurrency
GO CLI (Command-Line Interface)

- Advantages
 - Powerful – access to all features and parameters
 - Can use commands in scripts
 - Full concurrency

- Disadvantages
 - Takes a little time to learn
 - Verbose

- Transfer example:
 - `ssh cli.globusonline.org "transfer -- \ncsa#BlueWaters/scratch/sciteam/<username>/a_file \ncsa#Nearline/u/sciteam/<username>/a_file"`
CLI Usage

• Either ssh into cli.globusonline.org or include “ssh cli.globusonline.org” at the beginning of each command

• Transfers
 • Use “transfer” command on individual files or on entire directories with –r
 • Check transfers with “status” command
 • Use “cancel” to stop a transfer

• Basic file system commands: ls, mkdir
• For examples, see the BW Portal
• For a complete listing and man pages, ssh into cli.globusonline.org and type “help”
Moving HPSS Files

- Important note: transfer commands (GUI- and CLI-based) only copy files
- To move files, use the CLI “rename” command (example on BW Portal)
- Files cannot be moved using the GO GUI
Optimizing Transfers

• GUI does pretty well, but CLI can sometimes get better results
• Transfer large files (GB+ range)
• But also transfer lots of files to take advantage of concurrency
 • Max concurrency 20 files/transfer * max 3 active transfers = up to 60 files in flight
CLI-Only Transfer Parameters

- Format: `ssh cli.globusonline.org "transfer <parameters> -- <src> <dest>"`
- `--perf-p <num>`
 - Parallelism level (data streams/control channel)
 - Valid values: 1-16
- `--perf-cc <num>`
 - Concurrency (number of control channels; i.e., number of files in flight)
 - Valid values: 1-16
 - Default on BW to HPSS: 20, but only see ~12
- `--perf-pp <num>`
 - Pipeline depth (files in flight/control channel)
 - Valid values: 1-32
Recommendations for BW ↔ HPSS Parameters for GB-Sized Files

- Don’t set --perf-p (parallelism)
- Set --perf-cc 16 (concurrency = files in flight)
- Set --perf-pp 1 (pipeline depth)
- Important note: there’s a minimum queue length of 2 events, meaning you need at least 2x your concurrency in files or you won’t get full concurrency
 - E.g., need >= 32 files to get 16 files in flight with --perf-cc set to 16
- Play with settings for remote sites
Transfer Rates

- Rates calculated by GO are for entire transfer, including initialization and checksum verification, if applicable
 - Checksum approximately halves the total rate
 - Whole file is transferred, then checksum is computed
- BW ↔ HPSS for GB+ files
 - Single file transfer rate: ~2-3 Gbits/sec raw (1-1.5 Gbits/sec with checksum enabled)
 - We’ve seen aggregate transfer rates (16 files in flight, each file 10s of GB) up to ~36 Gbits/sec raw (18 Gbits/sec with checksum)
- Other sites for GB+ files
 - BW ↔ Kraken and BW ↔ Gordon: ~0.9-1.3 Gbits/sec with checksum
Transfer Errors

- Highly recommend using checksums, which are on by default for both the GUI and CLI
- Errors are infrequent but do occur
 - My testing: 1,352 50-GB transfers, 20 errors
 - Tend to occur in bursts
Other Notes

• Lustre striping
 • When transferring to BW, files inherit the stripe settings of the directory in which they’re placed (unless the file is so big that it requires a higher stripe setting, in which case it’s adjusted higher)

• Slow staging on HPSS tape
 • Intelligent staging in the works
 • One case: concurrency of only 2 when transferring from tape (files in the 10s of GB); 16 when transferring from HPSS disk
 • Lesson: avoid writing many many files to HPSS
Summary

• Use GO for all transfers to and from both BW and HPSS (not scp, sftp, or rsync)
• GO web GUI is simple; CLI is more powerful
• Balance large file size and large number of files to optimize transfers
 • Try to transfer files of at least 1 GB
• Store large files on HPSS; avoid many small files
 • Tar up files if necessary
 • Single-compute-node jobs recommended for large tar tasks
• Use checksums
• Ask for support: help+bw@ncsa.illinois.edu