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Executive Summary:   Condensed matter physics maps microscopic degrees of 
freedom to emergent behavior.  Computational simulations are essential in making this 
connection particularly in the context of strongly correlated systems where analytical 
tools are difficult to apply.  Unfortunately, simulating quantum mechanics scales 
exponentially with system size requiring significant computational resources and novel 
algorithms.   In the last year, the condensed matter systems we’ve considered include 
many-body localization, where the concept of temperature breaks down; pair density 
waves, which are essential to understanding superconducting materials; and 
spin-liquids in frustrated magnetism which have non-abelian anyons.  In addition, we 
have developed novel algorithms including a new inverse approach and 
machine-learning inspired wave-functions.  We have posted/published eight papers 
using Blue Waters including two that have been published in the prestigious journals of 
Physical Review X and Physical Review Letters.  The use of Blue Waters has been 
critical in accomplishing the computational tasks described above.  
 
Description of Research Activities and Results 
 
Many-Body Localization  
 
Why it matters:  Historically there are two qualitative categories of phases - quantum 
phases (i.e. superconductivity, anti-ferromagnetism, etc.) and thermal phases (liquid, 
solid, etc.).  Recently, it has been realized that there is a third qualitative category of 
phase - eigenstate phases.  The two canonical examples of an eigenstate phase are the 
many-body localized (MBL) phase and the ergodic phase.  The MBL phase is a phase 
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of matter where the concept of temperature itself breaks down and the system fails to 
thermalize even at what would be infinite temperature.  The existence of a new category 
of phase means that all the questions physicists have sorted out about thermal and 
quantum phases over the last five decades are still open in this new eigenstate phase. 
For example, even whether the concepts of first and second order transitions makes 
sense in this context is still unclear. 
 
Key Challenge: Currently the two main challenges in this field are to understand the 
nature of the transition and to discover eigenstate phases which go beyond the many 
body localized phase. Numerically, the difficulty in accomplishing this results from 
needing many disordered realizations of interior eigenstates of exponentially (in system 
size L) large matrices.   The eigenstates are separated by a distance of  of 2^{-L}. 
Typical system sizes range from L=10 to L=100.  At the lower end of this range 
(10<L<22), these eigenstates can be captured using exact diagonalization whereas in 
the upper end of this range they require new algorithms we have developed such as the 
SIMPS approach. 
 
Accomplishment: To begin with, we took last year’s work on understanding the mobility 
edge and shepherded it through the review process; it has now been published in 
Physical Review B.  This work on the mobility edge made the surprising discovery that 
states underneath the mobility edge know about the ergodic phase which exists above 
them. 
 
In addition, this year we posted (and published in Physical Review B) a work which 
discovered an eigenstate phase which goes beyond the many-body localized phase. 
The MBL phase is characterized by a many body spectrum whose eigenstates are all 
area law.  The new phase we discovered is characterized by an emulsions of states 
some of which are area law and some of which are log-law. This is the first numerically 
validated example of an eigenstate phase which is neither many-body localized nor 
ergodic.  



 
Caption: (Left)  Figure showing a histogram of states as a function of entanglement in the spin-disordered 
Hubbard model at L=8 in a particular quantum number sector. Note the bimodal nature of the histogram 
indicates that the eigenstates have both area-law entanglement (peaked around zero) and non-area law 
entanglement (peaked around 0.2) (Right) Difference in entanglement between a ground state and a 
series of finite energy-density eigenstates on a logarithmic scale (each eigenstate in the graph is higher in 
energy by U).  Note the fact that the lines are straight at high energy give evidence for the existence of 
logarithmically entangled eigenstates.  
 
We have also made significant progress on an ongoing project to understand the 
MBL-ergodic transition.  In order to understand this transition it is important to measure 
a series of rare resonances which are believed to drive the transition.  This year we 
have computed an extensive number of exact eigenstates on smaller systems over 
disorder strengths that span both the ergodic and the MBL phases. To understand the 
structure of these resonances we have started to analyze the eigenstates’ two-site 
quantum mutual information. Preliminary data (shown below) suggests the formation of 
long range resonances appears in a scale invariant fashion close to the ergodic MBL 
transition.  As part of the work this year we need to better understand this result in terms 
of the l-bits, etc. 

 



Caption: Preliminary results showing probability of finding strong quantum mutual information bonds 
(resonances) of range R. Three different disorder strengths are presented: W=1.0 is ergodic, W=3.7 is at 
the transition, and W=10.0 is MBL. We can see evidence of the scale invariance of the resonances’ 
structure at long ranges. 
 
Why Blue Waters: For the calculations concerning the resonant bonds of ergodic and 
MBL eigenstates, a million eigenstates for each point of the phase diagram mapped (3 
energy densities and 24 different disorder strengths) were necessary, due to long 
resonances being extremely rare events. The large scale of parallelism achieved by 
Blue Waters was essential for the realization of this project. The same feature will be 
essential to proceed with this and other projects we have planned for this year. 
 
 
Spin-liquids and frustrated magnets  
 
Why it matters:  One of the most difficult quantum materials to understand are insulators 
whose spin degrees of freedom interact on a frustrated lattice (for example, the kagome 
or triangular lattice).   Such quantum materials are often very sensitive to minor changes 
in their underlying Hamiltonian induced by changes in properties such as doping or 
pressure. This results in a wide myriad of possible phases.  These phases range from 
the pedestrian, such as anti-ferromagnets, to the exotic, such as the quantum spin 
liquid. It is critical to understand better how frustration drives the existence of these 
phases as well as become better at predicting which parameters lead to which phases. 
In addition, quantum spin liquids have potential applications in quantum computing. 
 
Key Challenges:  The key challenge in this area is that the cost to compute properties of 
a Hamiltonian scales exponentially with the system size.   This is particularly 
problematic given that many Hamiltonians must be considered to work out an entire 
phase diagram.  To make progress then, one must either (1) pay the exponential cost or 
find good approximations for measuring properties of the Hamiltonian or (2) find special 
Hamiltonians which one can solve for more efficiently.  
 
Accomplishments:  This year, we have made progress in both of these areas as well as 
made direct connection to experiment.  
 
(1)  We recently discovered a special Hamiltonian, H=XX+YY- ½ ZZ, which has an 
exponential number of degenerate ground states.  This Hamiltonian connects to the 
most interesting phase in frustrated magnets, the quantum spin liquid.  In addition, we 
numerically were able to show that this degenerate Hamiltonian connected to four 
additional phases.  This gives good evidence that almost all of the phases on the 



kagome lattice are actually sourced by this point.  This gives a new important qualitative 
understanding of frustration. While much of this work was accomplished in 2017, we 
shepherded this result through the review process this year and it has now appeared in 
Physical Review Letters. 
 
In addition, we have produced a follow-up work where we were able to analytically 
connect the exponentially degenerate point to all phases at high and low magnetization 
sectors on the kagome lattice as well as a number of other lattices. While we were 
eventually able to show this analytically, the key to accomplishing this was a 
serendipitous numerical discovery that this Hamiltonian was entirely described by the 
degenerate subspace.  This work has been posted at https://arxiv.org/abs/1808.08633. 
 
(2)  In addition this year, we made progress on finding spin-liquids and determining the 
phase diagram of classical and quantum spins on the stuffed honeycomb lattice. 
Concerning the classical spins, we have determined the entirety of the phase diagram 
and found 13 phases!   Four of these phases intersect in a quatri-critical point which 
becomes a quantum spin liquid on melting.   This work is now published in Physical 
Review B.  In terms of the model with quantum spins,  we have found the existence of 
two spin-liquids: a Dirac spin-liquid and a chiral spin liquid.  In addition, we have been 
able to determine seven other phases in the overall phase diagram. The current 
remaining questions (to be addressed this year) is to refine the locations of the 
transitions in these phases and to track down which PSG the Dirac spin liquid falls 
under.  
 
(3) Finally, we have been collaborating with Greg MacDougall to determine the nature of 
the new spinel spin-ice candidate, MgErSe4.  This material appears largely classical 
and has a ground state which has a non-trivial zero temperature entropy suggesting that 
it is a spin-ice.  We did a numerical comparison with this experiment and showed that 
the typical Hamiltonian was not a good representation of this material as there was no 
way to use a classical Hamiltonian and simultaneously match the neutron scattering and 
specific heat data.  Instead, some amount of quantum mechanical interactions must be 
included.   This work has been posted at https://arxiv.org/abs/1703.04267 
 



    

  
 
Caption: (top left) Evidence that the degenerate subspace of the XXZ0 Hamiltonian exactly represents the 
exact state at large Jz.  Here we compare the ground state energies from exact diagonalization and 
diagonalization in the three-color basis as a function of Jz for the 36d cluster for Sz = 14.   (top right) 
Classical phase diagram of the stuffed Honeycomb lattice showing 13 different phases as a function of J’ 
and J2.  (bottom) Comparison of Monte Carlo (solid line) with experiment (data points) for the specific 
heat (left) and the neutron scattering intensity (right).  The comparison is good for the specific heat but 
poor for the intensity indicating that there has to be additional quantum terms.  
 
Why Blue Waters:  Each of these frustrated magnetism projects require a significant 
number of simulations to either span a phase diagram (like the stuffed Honeycomb 
projects) or to tune parameters to match experimental data (like the spin-ice project). 
In addition, at least for the cases where exact diagonalization is required it takes 
approximation a wall-clock day distributed over 10 nodes to get a state.  Without the 
node-hours on Blue Waters we would not have enough time to span over the necessary 
part of the phase diagram.  
 
 
Pair Density Waves/Hubbard Models 
 
Why it matters: An outstanding question in the field of superconductivity is an 
explanation of the intertwined orders of the high temperature superconductor materials, 
such as LBCO. One proposal to describe this order is known as pair density wave 



(PDW) order. We are considering a model which analytic arguments suggest should 
have pair density waves and majorana modes (a key ingredient for topological quantum 
computing).  A better understanding of this state could lead to new insights and a deep 
understanding of superconducting materials.  
  
Key Challenge: The key physics challenge is to numerically validate that this model has 
a pair density wave and majorana edge modes. In practice, the difficulty in 
accomplishing this is to find the relevant parameters (the phase space is large) and to 
overcome the fact that the system is gapless causing most methods to have increased 
computational complexity to solve.  For example, we are attempting to use DMRG 
whose complexity scales logarithmically with system size.  
  
Accomplishments: Despite the finite size problem, we’ve discovered 4 degenerate 
excited states that show evidence of hosting a topological edge mode. It contains a 
nearly localized edge mode with a superconductor in the bulk. Further work must be 
done to fully understand if these are indeed Majorana modes and how the ground state 
differs.  
  
Why Blue Waters: The state of the art technique for studying this model, density matrix 
renormalization group (DMRG), is most adept for gapped 1D systems. Our system is 
effectively 1D, but is gapless – requiring a logarithmically scaling cost to evaluate larger 
systems. Additionally, we are plagued with finite size effects which require a large 
parameter search space to find a state that can realize the long range physics. The 
ability to parallelize many simulations simultaneously using Blue Waters allows for an 
efficient time frame for searching the parameter space. 
 
Machine Learning and Wavefunctions 
 
Why it matters:  The key task of condensed matter physics is to start with a Hamiltonian 
and produce a ground state wave-function.  Progress on this front directly affects every 
field of condensed matter physics.  
 
Key Challenge:  Unlike classical physics where there is always a polynomial relationship 
between the physical world and what can be classically simulated, in quantum physics 
simulations are exponentially more costly then the real world (this is actually why 
quantum computers are so powerful).  
 
Accomplishments:  Our accomplishments in this area are two-fold.  First, we finished a 
result where we inverted this entire process - we can now take wave-functions and 



generate all the Hamiltonians which give it.  The process is, surprisingly enough, 
polynomial in system size.  We have used this technique to invert a number of 
interesting wave-functions including a descendant of a spin-liquid on a ladder.  This 
work has now appeared in Physical Review X.  
 
Secondly, we have been using ideas from machine learning to generate improved 
wave-functions.  In our first work on this we have developed a way to use machine 
learning techniques for fermion systems. In particular, we use a deep neural network to 
produce a configuration dependent set of single particle orbitals; we label our new 
wave-function the neural net backflow.  This significantly improves the energetics on the 
Hubbard model giving us a (variance extrapolated) result that is within a percent of the 
exact energy. 
 
Why Blue Waters:  Optimizing wave-functions is computationally very expensive but 
embarrassingly parallel.  The use of Blue Waters is essential to be able to get results 
back in a quick enough wall-clock time that we can iterate on the wave-functions and 
parameters. 
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Plan for next year 
We are requesting 250,000 node hours next year split into Q1: 30% , Q2: 20%, Q3: 
30%  Q4: 20% 
 
Our plans for next year involve continuing/new projects on a variety of these themes.  
 
 
 
Many Body Localization 
 
Tackling the transition:  Maybe the most important question remaining about the 
many-body localized phase is understanding the transition between the MBL and 
ergodic phases. While there is precise phenomenology describing the structure of the 
integrals of motion (IOM) of MBL systems, the breakdown of the locality of these IOMs 
at the transition is not yet well understood. In addition, the computation of the local 
IOMs of MBL systems is a challenging task for large systems. We are developing an 
efficient algorithm that presents successful preliminary results in computing local 
approximate IOMs (up to a very small error) of infinite MBL systems. Also, our algorithm 
shows the breakdown of the locality of the IOMs close to the transition. We expect to 
gain knowledge about the transition, as well as insight on the mechanism for the break 
down of the locality of the IOMs through this project. We plan to obtain IOMs for at least 
1000 disorder realizations, at least 20 disorder strengths, and about 30 IOMs per case. 
Each of the runs involves exactly diagonalizing of the order of 10 large matrices (up to 
computational constraints) that take to 10 minutes each, running on a single core. This 
gives us an estimate of about 30,000 node hours needed on Blue Waters. 
 
Many-body localization in two dimensions: Studies on many-body localization have 
mainly focused in the past on one-dimensional systems, due to the difficulty of 
computationally accessing highly excited eigenstates of two dimensional models. During 
the past year, we have developed an algorithm that efficiently approximates MBL 
eigenstates in arbitrary dimensions. We plan to study the MBL phase in 
two-dimensional systems, where its existence is an open question. Using our newly 
developed selected CI variant, we will do this by accessing about 1000 eigenstates on 
three different system sizes on at least 20 different points of the phase diagram. Each 
run of the algorithm to access an eigenstate involves iteratively solving about 100 
eigenvalue problems on about 100 increasingly larger subspaces of an exponentially 
large Hilbert space, which overall takes about 20 core hours. Our estimate is that we will 
need 30,000 node hours to complete this project. 



 
Hamming distance localization of MBL eigenstates: Our algorithm developed for two 
dimensional systems presents an efficient way of analyzing the spread in Hamming 
distance of the dominant configurations of the eigenstates, both in one- and 
two-dimensional systems. It is believed that MBL eigenstates are localized in Hamming 
distance, and this analysis would provide and empirical measurement over large 
systems. We expect to run this algorithm for at least 1000 eigenstates over at least 10 
points over the one-dimensional phase diagram. This gives us an estimate of 15,000 
node hours needed. 
 
In total, our MBL projects require approximately 75,000 node hours.  
 
Spin Liquids and Frustrated Magnetism 
 
Stuffed Honeycomb:  This year we will finish the stuffed honeycomb project determining 
which PSG the spin liquid supports.  To accomplish this, we need to do variational 
Monte Carlo simulations on all the different PSG on the stuffed honeycomb lattice. Our 
collaborators have recently catalogued the available PSG and identified 12 of them.  We 
then need to optimize these 12 PSG (they each have around 6 parameters) on a series 
of system sizes that allow us to extrapolate to the thermodynamic limit (L=32, 144, 648). 
The optimization of the largest size is expected to take 8000 node hours (this is 
extrapolating from runs we’ve done on 144 sites and using the fact that the algorithm 
scales cubically).  Checking the 12 PSG then will take 96,000 node hours.  
 
 
Machine Learning for Quantum Many-Body Problems  
 
We have recently developed a new variational code based on the tensorflow framework 
that optimizes machine learning wave-functions on GPU.  I understand that, recently, 
Blue Waters has updated tensorflow to a new enough version that we can now run 
efficiently all the features of this code on Blue Waters.  Machine learning wave-functions 
are a new class and there remains a number of interesting problems and benchmarking 
to solve using these techniques.  Our focus this year will be on using these 
wave-functions to understand the spin-liquid on the kagome lattice which is still 
controversial.  Because it is only recently that everything seems to work on scale at 
Blue Waters and given the historical difficult of solving the kagome Heisenberg model, it 
has been difficult to determine how many node-hours this particular project will need. 
We roughly expect that we will need to do systematic studies up to 5 hidden layers with 
a couple different neurons per layer to extrapolate to the exact limit.   Previous studies 



on kagome find that a width of 8 is required to get results near the thermodynamic limit. 
Assuming we do a periodic bulk 8x8 system with 3 sites per unit cell, this gives 192 
sites.  This should take about 400 node hours per optimization run and therefore 30,000 
node hours for the complete systematic study.  Assuming we want to do three different 
parameters (the J2=0 which is most interesting but may be at a critical point) and two 
values at positive and negative J2, this gives 90,000 hours to accomplish this work 
using the xk nodes that provide GPU support. 
 
Pair Density Waves 
 
This year we will aim to finish our project on finding pair density waves and majoranas 
in Kondo Heisenberg chains.  Preliminary results have suggested that the correlation 
lengths for the pair density waves are such that ladder of length L>256 are required to 
observe or rule out the existence of topological edge modes.  We’ve identified several 
ranges of parameters which appear to have the smallest correlation lengths. If we tune 
three parameters around this regime (the perpendicular and parallel Heisenberg terms 
across the ladder as well as the diagonal term) using four points in each direction gives 
64 phase points to consider seriously.  Each of these phase points requires 
approximately 500 node hours to run requiring in total 32,000 node hours.  Because 
these are run with DMRG, they require the high memory XE nodes. 
 
Triangular Hubbard Models 
 
The Hubbard model is one of the paradigmatic models of strongly correlated systems. 
While there has been significant study of the square Hubbard model, there is still a 
number of open questions about Hubbard models on different lattices.  Interestingly, 
recent experimental and theoretical work (using DMRG) has suggested the existence of 
a chiral spin liquid phase on the triangular Hubbard model. As the DMRG only can 
simulate ladders, this has yet to be confirmed in the bulk.  We will accomplish this using 
variational Monte Carlo (VMC) techniques, which allow a study of very large system 
sizes through VMC’s efficient parallelization.  Our preliminary optimization runs takes 
approximately 1000 node hours (parallelized over 10 nodes) per simulation.   The 
triangular Hubbard model has a single parameter U/t which needs to be tuned 
throughout the phase diagram.  Previous studies suggest that the chiral spin liquid 
phase, if it exists, has a range of approximately 1 (in units of U/t) but it’s exact location 
is controversial.  Therefore we will need increments of approximately 0.2 between U/t=4 
and U/t=10 with approximately 2 different wave-functions each (Slater-Jastrow and a 
CPS wave-function).  This gives 60,000 node hours total.  
 



 
 
In total these calculations will require 353,000 node hours total with 90,000 node hours 
being on the GPU nodes.  We are therefore requesting the maximum allowed 250,000 
node hours.   In practice, using some of the discounted time on Blue Waters may allow 
us to recover some of the additional node hours we need (this discounted time will also 
help compensate for the fact that many of these estimates are conservative assuming 
everything goes smoothly and no new exciting or confusing physics phenomena arise 
which need to be explored).  Alternatively we will make what partial progress is possible 
given the allocated node hours applying for additional node hours elsewhere to 
complete the projects.  
 
 
 
 
 


