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Executive summary: 

Despite changes in vascular structure with age, adequate brain blood flow is critical for 
supporting healthy function into old age. Imaging blood flow in the brain using magnetic 
resonance (MR) imaging requires computational techniques to maximize the signal to 
noise ratio of the acquired data to compensate for the intrinsically low signal due to the 
small volume fraction of blood in the brain. As part of this allocation, PowerGrid, a toolkit 
for accelerating MR image reconstructions using GPUs and distributed computing was 
created in C++ and OpenACC, while also leveraging MPI to distribute across multiple 
GPUs. Using PowerGrid, reconstruction algorithms for field inhomogeneity and 
nonlinear motion induced phase correction were implemented to support our ongoing 
investigations into changes in brain blood flow with age. 

Description of research activities and results:  

Key Challenges:  

The majority of our reconstruction code currently used to support active research relies 
on an extensive amount of code written in MATLAB. While high-level MATLAB code 
provides a flexible and expressive syntax for formulating model-based image 
reconstruction problems in MR, it does not scale across multiple machines nor is it 
applicable on HPC platforms like Blue Waters.  

In addition, our group’s previous work in parallelizing MR image reconstruction using 
GPUs, the Illinois Massively Parallel Acceleration Toolkit for Image reconstruction with 
ENhanced Throughput in MRI (IMPATIENT MRI), built in association with Wen-Mei Hwu 



and Zhi-Pei Liang, maximized speed-up by formulating the entire model-based 
reconstruction problem in relatively low-level CUDA code. This approach was 
successful in speeding up the reconstruction by fully utilizing a single GPU accelerator 
on a single workstation at the cost of extremely difficult to maintain code, lack of 
flexibility of implementing novel reconstruction algorithms, and no immediately available 
path to increasing scale via distributed memory computations.  

Diffusion-weighted imaging, used by our team to quantify changes in the 
microvasculature, presents multiple challenges for iterative, model-based MR image 
reconstruction. Using efficient, high signal to noise ratio acquisition strategies, such as 
multi-shot 3D imaging, requires computationally expensive techniques to correct for the 
inevitable motion induced phase errors in the acquired data along with accurately 
combining information from multiple coils1. Additionally, the use of high signal to noise 
ratio acquisitions can involve the use of trajectories with long readout times, leading to 
extensive distortion due to magnetic field inhomogeneity2. These distortions can be 
corrected using techniques used by our group, at the cost of significant computation 
time for an image. Furthermore, given that the percentage of diffusion weighted signal 
that cerebral blood contributes is extremely small, on the order of 5%,3 reducing 
computational complexity or cost by accepting increased distortion or motion induced 
phase error is not acceptable.  

Why it Matters:  

Sufficient and reactive blood flow in the brain is a critical component for the health of 
neurons and their supporting cells. However, advanced aging is accompanied by critical 
changes to the vasculature, including the microvasculature (arterioles and capillaries) 
that is involved in exchanging nutrients and waste between the blood and tissues. 
Although vascular density and blood flow changes have been observed, these may be 
related to architectural changes accompanying age. The coiling, looping, and 
degradation of microvessels perfusing brain tissue can be seen in both the gray and 
white matter of aged subjects4. Prior to our work, measuring changes and degradations 
in the microvascular architecture of the human brain was limited to postmortem samples 
by the destructive nature of microscopy and histology used to quantify the 
characteristics of the microvasculature. Through development of acquisition, iterative 
odel-based image reconstruction, and estimation procedures, we are able to capture the 
weak signal changes due to the degradation of the vascular structure with age. Fig. 1 
shows a representative vascular perfusion fraction map and pseudodiffusion coefficient 
for blood flow for a slice high in a young human brain. These maps require the 
acquisition of 14 separate diffusion weighted acquisitions in order to characterize the 
very small blood flow signal as reflected in the vascular perfusion map.  



 

Why Blue Waters:  

For each blood flow dataset, we need to reconstruct multiple slabs of tissue, from 
multiple imaging volumes, from 10-20 measurements that vary the diffusion weighting 
and are received from 32 parallel receiver coils arranged around the head. This creates 
a large amount of data that is well-suited to parallel implementation across GPU-
equipped nodes. Blue Waters provides access to a large number of GPU-equipped 
compute nodes with high speed interconnect ideal for distributed memory computations. 
In addition, the OpenACC support present in the Cray Programming Environment 
makes Blue Waters ideal for translating MR reconstruction algorithms.  

Accomplishments:  

Our team developed PowerGrid, a toolkit for accelerating iterative, model-based MR 
image reconstructions via GPUs. Implemented in C++, PowerGrid allows us to retain 
the familiar structure that is a result of years of work developing algorithms for advanced 
MR image reconstruction in MATLAB while leveraging HPC resources, such as Blue 
Waters and OpenACC.  

Figure 1: (left) Vascular perfusion fraction reporting amount of blood flowing in the 
microvasculature in each voxel. Notice that the number is small, less than 10% in all but 
voxels dominated by cerebrospinal fluid, and much less than 5% for most of the voxels 
in the brain parenchyma. (right) Pseudodiffusion coefficient (D*) for the same slice in the 
brain. D* reflects the mean square displacement of the blood flow during the MR image 
acquisition. Higher D* reflects more blood motion on average, while lower D* reflects 
less blood motion. Taken together, the perfusion fraction and D* can reflect blood flow. 



The object structure of PowerGrid was designed to combine state of the art techniques 
for model-based image reconstruction in MR and resources available on Blue Waters, 
namely MPI and OpenACC. This approach was necessary as MR physicists are not 
trained in parallel computing languages, but traditionally do the majority of software 
development for reconstructions inside an interactive high-level language like MATLAB. 
Fig. 2 shows how PowerGrid maintains familiarity with the code as typically written in 
MATLAB but enables the use of OpenACC accelerated routines. Other routines, not 
shown, enable the use of MPI for distributed computation. 

Using PowerGrid, we have shown speed up factors of up to ~11x above the single GPU 
case through the use of MPI for distributed computing as shown in Fig. 3 for a small 
benchmark data set. We anticipate increased speed up factors as the dataset size and 
complexity increases. Our use of MPI is enabled both by the code written in PowerGrid 
and the exploitation of natural parallelism that exists in the SENSE approach to parallel 
imaging in MR imaging5. Parallel imaging uses multiple coils and receiver channels to 
increase the speed of acquisition. These separate streams of data each provide a 
natural work unit that can be assigned to a GPU, although the parallelism is not 
complete, requiring the use of MPI communication routines to share results before 
performing another global iteration of the image reconstruction.  

//Forward Operator
Col <CxT1> operator*(const Col <CxT1>& d) const {

Mat <CxT1> outData = zeros<Mat<CxT1 >> (this->nx, this->ncoils);
for (unsigned int ii = 0; ii<this->ncoils; ii++)

outData.col(ii) = (*this->G_obj)*(d%(this->SMap.col(ii)));
return vectorise(outData); //G_obj*d is a forward NUFFT/DFT

}

//Adjoint Operator
Col <CxT1> operator/(const Col <CxT1>& d) const {

Mat <CxT1> inData = reshape(d, this->nx, this->ncoils);
Col <CxT1> outData = zeros<Col<CxT1 >> (this->ny);
for (unsigned int ii = 0; ii<this->ncoils; ii++)

outData += conj(this->SMap.col(ii))%((*this->G_obj)/inData.col(ii));
return vectorise(outData); //G_obj/d is an adjoint NUFFT/DFT

}

PowerGrid/C++	SENSE	Operator
%Forward Operator
if ~S.is.transpose
outData = zeros(nx,ncoils);
for ii = 1:ncoils

outData(:,ii) = G*(SMap(:,ii).*d(:));
end %G*d is a forward NUFFT/DFT

else

%Adjoint Operator 

d = reshape(d, [], ncoils);
outData = 0;
for ii = 1:ncoils

outData = outData + (conj(SMap(:,ii))).*(G’*d(:,ii));
end %G’*d is an adjoint NUFFT/DFT

end

IRT/MATLAB	SENSE	Operator

%Forward SENSE Operator
d = S*img;

%Adjoint SENSE Operation
imgProj = S‘*d;

%Gradient Descent SENSE Recon
N = floor(sqrt(length(imgIit))

img = 1/(2*N).*(A’*data) % Form image estimate
for ii = 1 : num_iterations

dataEst = (1/(2*N)).*(A*img); % Form scaled k-space estimate
imgError = (1/(2*N)).*(A’*(data-dataEst); % Image space error
img = img + imgError; %Update Image

end

IRT/MATLAB	Examples
//Forward SENSE Operation

Col<CxT1> d = S*img; 
//Adjoint SENSE Operation

Col<CxT1> imgProj = S/img;
//Gradient Descent SENSE Recon

uword N = floor(std:::sqrt(xInitial.n_rows));
Col<CxT1> dataEst, imgError,
img = (1/(2*N))*(A/data); //Form image estimate
for(int ii = 0; ii < num_iterations; ii++) {

dataEst = (1/(2*N))*(A*img); // Form scaled k-space estimate
imgError = (1/(2*N))*(A/(data-dataEst)); //Image space error
img = img + imgError; //Update Image

}

PowerGrid/C++	Examples

Figure 2: Diagram showing correspondence between code from the Iterative Reconstruction 
Toolkit (IRT) on the MATLAB platform and the code implemented in PowerGrid during the 
course of this allocation. PowerGrid wraps the GPU accelerated numerical transforms in 
syntax that approximates the widely used Iterative Reconstruction Toolkit. 
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Figure 3: Results showing speed up versus number of MPI ranks (K20x GPUs) on 
Blue Waters showing peak speed of up ~11x with 32 nodes and saturation for 
additional ranks for a small benchmark case distributed with PowerGrid. 
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