
Blue Waters Progress Report 2015–2016

Whole Cell Simulations of Processes Related to Protein
Translation

Principal Investigator
Zaida Luthey-Schulten

Department of Physics, Department of Chemistry, Center for the Physics of
Living Cells, Beckman Institute for Advanced Science and Technology, and
Carl R. Woese Institute for Genomic Biology; University of Illinois, Urbana,
IL, USA

Collaborators
Thomas Kuhlman

Department of Physics, Center for the Physics of Living Cells; University of
Illinois, Urbana, IL, USA

James R. Williamson
Skaggs Institute for Chemical Biology, Department of Integrative Structural
and Computational Biology, Department of Chemistry; Scripps Research
Institute, La Jolla, CA, USA

Corresponding author: Zaida Luthey-Schulten <zan@illinois.edu>

Executive summary

Central to all life is the assembly of the ribosome: a process involving the association of ∼50 proteins to 3 RNA
molecules in a hierarchical, coordinated manner. Through the synthesis of data from many disparate sources including
in vitro kinetics, cryo-electron tomography, and genomics data, we have developed a spatially resolved, stochastic model
of the biogenesis of the ribosomal small subunit inEscherichia coli. Using our GPU-accelerated LatticeMicrobes (LM)
software on Blue Waters, we have observed biogenesis in modeled cells at timescales up to 2 hours. Key intermediates
in the assembly pathway inferred from in vitro kinetics were investigated using molecular dynamics. We then extend
this whole-cell model to include cell growth and DNA replication. To accomplish all this, high performance computing
using GPU-based accelerators was necessary. Blue Waters provided the necessary computing power to complete this
research as well as directed the development of LM to maximize performance. In total, we used 457,000 node hours.
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1 Ribosome biogenesis in Escherichia coli

Ribosomes, the molecular machines responsible for protein synthesis, are fundamental to all life. The precise synthesis
and assembly of a ribosome requires the association of ∼50 individual proteins to the three strands of ribosomal RNA
(rRNA) in order to form the two halves of the ribosome: the large- (LSU) and small- (SSU) subunits. This process is
referred to as ribosomal biogenesis, and is composed of four steps (36): (1) the transcription of rRNA from the multiple
copies of ribosomal DNA, which is the rate limiting step for the ribosome biogenesis in vivo (41); (2) the synthesis of
the ribosomal proteins (r-proteins), which is regulated on the translational level based on organization of the r-protein
operons in the genome; (3) post-transcriptional processing and modification of both the rRNA and r-proteins; and (4)
the highly coordinated assembly of r-proteins and rRNAs towards the mature ribosomal subunits. Ribosomal assembly
requires the cooperation of many molecular components. It requires that the r-proteins which are translated in different
regions of the cell to find and bind with the rRNA in the correct order of assembly. In addition, approximately 20
assembly cofactors are engaged to facilitate the process at various assembly stages

The intricacy of ribosome assembly first attracted Nomura et al (44), who originally mapped out the hierarchical
dependency of the r-proteins binding to the Escherichia coli 16S rRNA using equilibrium reconstitution experiments
(Fig. 1a). Later developments boosted our understanding of the protein assisted dynamics of RNA folding (10, 31, 37),
and the kinetic cooperation of protein binding (24, 28, 40) during in vitro ribosome self-assembly. Both aspects
suggested that assembly of the E. coli 30S subunit proceeds through multiple parallel pathways nucleated at different
positions on the 16S rRNA, and a 5′ to 3′ directionality during 30S ribosomal assembly is always present. However,
conflicting reports of the order in which r-proteins associate to the nascent subunit hamper our investigation of ribosome
assembly under in vivo conditions. Therefore, a comprehensive model that captures the topology of the protein–RNA
interaction network is needed to decipher the underlying rules governing the assembly of the ribosome.

Ribosome biogenesis is a fundamental biological process present in all three domains of life. For this reason alone it
is of great interest to basic science. However, a detailed understanding of the process will impact the study of other
biological systems. For example, cellular metabolism is tightly coupled to ribosome biogenesis since cell growth
relies on protein synthesis. The details of these interactions and their integrated effects on the organism level are
not completely understood. Due to the complexity of the chemical reaction networks involved, progress can only be
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FIGURE 1 (a) Graph of thermodynamic binding dependencies of r-protein to the 16S rRNA (44). Only the major
dependencies used in our models are depicted here. The arrows indicate binding dependencies, e.g. for the case of
A→B, A must be bound to the intermediate before B can bind. Proteins uS2 and bS21, shown in open rectangles, are
not included in our models due to the lack of available kinetic data. (b) Diagram of the E. coli genome showing the
location of r-protein and rRNA operons associated with the assembly of the SSU. Red lines indicate the location of
rRNA operons, where as blue lines indicate the location of r-protein operons. The replication of the genome begins at
oriC (12 o’clock) and progresses on both sides of the chromosome until both replication forks reach 6 o’clock, where
upon replication completes and the two daughter chromosomes separate.
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made through the design and study of detailed kinetic models which capture the complex interactions between cellular
processes.

Blue Waters was crucial to the investigation of this problem due to the size of our simulations. Our software suite
to simulate stochastic reaction-diffusion systems, Lattice Microbes (LM), requires NVIDIA GPUs, and was readily
modified to take full advantage of the available K20X accelerators. These simulations are I/O intensive, generating
trajectory files approximately 10 GB in size per trajectory, of which many are needed for a proper statistical analysis of
the results. Blue Waters provided all the technical resources necessary for us to study this system.

1.1 Whole-cell simulations

To study our model of ribosomal biogenesis at the whole-cell level we employ LM, a suite of highly-parallel GPU-
accelerated algorithms for stochastic simulation of complex biochemical reaction networks under realistic cellular
conditions (5, 8, 15, 16, 22, 27). The software includes implementations of both chemical master equation (CME) and
reaction-diffusion master equation (RDME) sampling algorithms, including a unique multiple particle diffusion (MPD-
RDME) (27), which factors the diffusion operator in to x-, y-, and z-components, allowing for more opportunities for
parallelization. The CME describes the time-evolution of the probability of the system being in a given state—the
copy number of each chemical species—under the assumption of spatial homogeneity. It can be thought of as a
special case of the more general RDME which governs the time-evolution of the system’s spatially resolved state—the
copy numbers found in each subvolume of the lattice. By discretizing space and treating diffusion as hops between
lattice sites, LM trajectories are capable of reaching hour long timescales—orders of magnitude longer than competing
codes (17, 23, 33, 38).

Briefly, realistic models of crowded cellular environments based on cryo-electron tomography and proteomics data are
coarse-grained to a cubic lattice, where initial species and reactions are assigned to each subvolume. The stochastic,
spatially resolved trajectories of the system are implicitly sampled from the solution to the RDME using a Gillespie-type
Monte Carlo approach:

∂P(x, t)
∂t

=
∑
v∈V

R∑
r=1
−ar (xv)P(x, t) + ar (xv − Sr )P(x − Sr1v, t)

+
∑
i∈V

∑
j∈V

N∑
α=1
−dαi j x

α
i P(x, t) + dαji (xαj + 1

α
j )P(x + 1αj − 1

α
i , t) (1)

Here, xαv is the number of molecules of species α (α = 1, · · · , N) in subvolume v (v ∈ V ). R is the number of reactions.
ar is the reaction propensity for reaction r given the state of a subvolume xv . S is the stoichiometry matrix. dαi j is the
diffusive propensity for one molecule of species α to diffuse from subvolume i to j. The first line on the right hand side
describes chemical reactions between species in each subvolume; it is similar to the CME, in effect assuming spatial
homogeneity within each subvolume during each time step. The second line on the right hand side describes diffusion
of particles into and out of each subvolume. The MPD-RDME methodology assumes that diffusive events are the
most frequent events occurring in a simulation, with several likely to take place roughly simultaneously in subvolumes
spread across the simulation volume. By taking short time steps such that active particles are unlikely to take part in
multiple reactions, the subvolumes are rendered independent, and can be calculated in parallel on many-core machines
(details on methodology and implementation can be found in (8, 16, 27)).

1.1.1 In vivo ribosome biogenesis

Wehave completed the design, simulation, and analysis of a spatially resolved, stochastic model of ribosomal biogenesis
in E. coli (2). The assembly of the small subunit requires the binding of 20 individual proteins to the 16S rRNA. If all
possible binding reactions are treated fairly, a combinatorial explosion of network complexity results. This leads to on
the order of 106 intermediates and 1018 reactions. We instead construct a model that explicitly uses the thermodynamic
protein binding dependencies summarized in the Nomura map ((44), Fig. 1a) to decreases the size of the network to
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a manageable level of 1,633 species and 7,000 reactions, taking effective r-protein binding rates published by James
R. Williamson’s group performed at two in vitro conditions: low temperature (15 ◦C) (24) and high temperature
(40 ◦C) (25). The low temperature data provided us with binding rates which are dependent on the identity of the
intermediate; the high temperature data provided only binding rates independent of intermediate identity, however also
included predicted intermediates using cryo-electron microscopy. Though the low temperature model was of little
physiological significance since the optimal growth temperature for E. coli is 37 ◦C, it possesses a clear assembly
pathway and suggested key assembly intermediates to study using MD (§ 1.2).

To prepare for RDME simulation using LM, we reduced the network size of the high temperature model. Using
an ODE-based representation of the reduced assembly network, we identified intermediates which were unlikely to
contribute significantly to the overall assembly process. The effect of removing these species was tested by removing
them sequentially in order from the network in order of lowest to highest significance, and comparing the concentration
time course of the modified network to the original 1,633 species network. This process led to an assembly network
consisting of 145 intermediates and 325 reactions.

From this assembly model, we constructed a model of the biogenesis of the SSU which includes the transcription of
rRNA and mRNA coding for the SSU ribosomal proteins, translation of proteins, and degradation of mRNA. This
model of biogenesis was then embedded in a spacial model of E. coli, derived from cryo-electron tomography data (22),
which takes into account the geometry of the cell as well as its compartmentalization into distinct regions (Fig. 2a).
The cell—4.0 µm long and 0.9 µm in diameter—was constructed in a 32 × 32 × 128 lattice with a lattice spacing of
32 nm. The simulated volume is divided into four regions: extracellular, membrane, cytoplasm and nucleoid. The
particles in the cytoplasm have a higher diffusion rate than in the nucleoid to account for molecular crowding arising
from the chromosome. To account for the partial exclusion of translating ribosomes from the nucleoid region (11), the
transition rate from nucleoid to cytoplasm was set to 0.25× the reverse transition. Species representing the ribosomal
genes were placed in the nucleoid along the long axis of the cell at positions determined from the location of the gene
in the E. coli genome (Fig. 1b). This stochastic, spatially resolved model was simulated using LM on Blue Waters. We
investigated the statistics of the relatively fast process of assembly (10 min. simulated time) over 128 replicates, as well
as the behavior over an entire cell cycle (120 min. simulated time) over 16 replicates. To use Blue Waters effectively,
modifications to LM to improve performance were necessary (see § 3).

We discovered that a simple kinetic model of SSU assembly in vitro can be incorporated into a model of ribosome
biogenesis with no changes to the experimentally derived association rate constants. The differences in intracellular
concentrations compared to the in vitro experiments is enough to make up for the difference in assembly timescales
(2 hours in vitro, compared to 90 seconds in vivo.) Our in vivo model estimated the mean SSU assembly time within a
factor of two, as well as predicting that the assembly time distribution roughly follows a gamma distribution (Fig. 3d).
This model predicts the major assembly pathways of the SSU in terms of protein binding order and identifies the
important assembly intermediates.

Starting with cells containing no 16S-protein intermediates (i.e. only LSU, SSU, 16S rRNA, and protein), we ran
128 10-minute trajectories to gather statistics on the assembly process in vivo. To simplify the visualization of the
intermediate distributions, we analyzed the copy number of multiple intermediate configurations clustered by their
abundance versus time profiles (Fig. 3a), and plotted their spatial distribution along the xz-plane (Fig. 3b). We were
able to identify spatial localization of early SSU intermediates (Fig. 3c) to the nucleoid region near the rRNA operon
of origin. These intermediates are composed of states where only the primary and secondary proteins of the 5′ and
central domains are bound. We also observed spatial heterogeneity of the mRNA distributions, where messenger is
only found near the originating operon and outside of the nucleoid region (Fig. 3e). This appears to arise due to the
imposed exclusion of ribosomes from the nucleoid region in our model. To date, we have used 9,680 node hours on
these simulations.

1.1.2 In vivo ribosome biogenesis with growth and DNA replication

Our latest work on this model involves the addition of growth, DNA replication, and cell division (1). Using estimates
of when replication begins relative to cell division and how long it takes to replicate the genome from experiments
performed by our experimental collaborator Thomas Kuhlman, we extended the previous model to include gene
replication and cell growth. Duplication of the chromosome affects the copy number distribution of gene products
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FIGURE 2 (a) Cut away of a representative cell configuration. The particle density has been modified for illustrative
purposes, however the left end of the cell presents a representation of the true particle density. Ribosomal protein
operons locations (orange) are fixed within the nucleoid region. Messengers (not visible) are transcribed from these
sites and diffuse to find and associate with 30S particles (purple) upon which a 50S subunit (yellow) joins the complex
forming a translating ribosome (white). The ribosome translates r-protein (gray) which diffuse away and assembly
with nascent SSU intermediates (not visible) which are based on 16S rRNA transcribed from the rRNA operons (red).
Translating 70S particles are excluded from the nucleoid region through a bias in their intercompartmental transition
rates. (b) Schematic of geometry used in the replicating cell simulations. The lattice is 32 × 32 × 192 sites in the
x, y, and z directions respectively, with a lattice spacing of 32 nm. The simulation volume consists of 4 regions:
(1) extracellular space (gray), (2) membrane (green), (3) cytoplasm (orange), and (4) nucleoid (not colored, found in
center of cytoplasm). Operon species are placed within the nucleoid region based on their genomic loci and replicated
at times predicted by the replication model. The position of the operon species is evolved in time such that the operons
in the daughter cell are found in the same position as the operons in the mother cell. The cell volume grows constantly
throughout the cell cycle at an exponential rate from 2.4 µm to 4.7 µm, where upon it divides into two daughter cells
of length 2.4 µm. (c) Kymograph showing the evolution of spatial compartments and operon locations over one cell
cycle. The jagged steps arise from the discreteness imposed by the 32 nm lattice.
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FIGURE 3 (a) Fraction of assembly intermediates as a function of time. The traces represent the collective count of
intermediates which have been clustered into classes with similar abundance versus time profiles. (b) Projections of
the intermediate spatial probability distributions for the 6 clusters onto the xz axis. Early intermediates (T0 and T1) are
so short-lived that they remain near their originating rRNA operon. (c) Reduced network for 30S assembly at 40 ◦C.
Each node is an assembly intermediate, labeled according to which proteins are bound. A three digit number describes
the set of r-proteins bound to each domain (5′-, central-, and 3′- respectively), and all remaining r-proteins are listed
after the three digit number (2). The edges connecting the intermediates represent the r-protein binding reactions. The
width represents the total amount of intermediate converted by that reaction, and the color indicates the binding domain
of that protein (5′–red, central–yellow, and 3′–blue.) Predicted assembly intermediates from pulse/chase qMS and
cryoEM (25) are represented using rectangles. Intermediates investigated with MD simulations (§ 1.2) are indicated by
the callouts. (d) Distribution of assembly times for the SSU. The shape of the distribution takes the form of a gamma
distribution with a mean assembly time of 30 s—comparable to to the experimentally determined in vivo assembly
time of 1.3–3.5 minutes. (e) Distribution of mRNA–30S association (top), and translation termination (bottom) events,
showing the spatial dependence of translation. From central y slices, it is clear that the translating ribosomes and
even the initial 30S/mRNA assembly complexes are excluded from the nucleoid region. Since 30S particles can enter
the nucleoid, transcription initiation can occur near the DNA from which the messenger is transcribed, and in the
cytoplasm from mRNA is released from ribosomes terminating translation.
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FIGURE 4 (a) Comparison between constant cell (Fixed-volume RBM, blue) and replicating cell (RBM, green)
models over 16 replicates. Means are represented by solid lines and the interquartile range is given by the shaded
area. There is a significantly lower average SSU intermediate count seen in the replicating cell model compared to the
constant cell model (top panel), which is a result of the changing cell volume. In the last three panels are plotted the
absolute count of ribosomes (translating as well as dissociated), the absolute concentration of ribosomes, and the cell
volume. The replicating cell model produces ribosomes at approximately the same pace as volume expansion, leading
to a constant ribosome concentration over the cell cycle. (b) xz copy number projections of cells at evenly spaced times
throughout the cell cycle. The time evolution of the cell geometry is evident in this series of projections. Division
begins approximately 90 minutes into the cell cycle through the constriction of the cell membrane. Ribosomal protein
(top) diffuses rapidly through all compartments, leading to a distribution which mirrors the thickness of the cell at each
(x, z) coordinate. The transition rates of translating ribosomes (middle) between the nucleoid and cytoplasm regions
is biased to limit the number of ribosomes in the nucleoid. The most pronounced example of spacial heterogeneity in
these models is due to the 30S intermediates (bottom), where the earliest intermediates which result from the binding
of primary proteins are found near the rRNA operon from which the 16S rRNA was transcribed.

since the rate of transcript production effectively doubles (9), however to correctly capture the shape of the distribution
the behavior over the interval where themRNA copy number relaxes to the new steady state under the doubled gene dose
must be accounted for (7). The changing cell volume also impacts the copy number dynamics due to the dependence
of reaction rates on volume. The effect of these processes were investigated by deterministically modifying the cell
geometry, operon locations, and copy numbers over the course of the simulated cell cycle.

To allow for a direct comparison between the original (constant) model and the augmented (replication) model, all
transcription rates were scaled by a factor of 1.8 and the birth rate of LSU particles was scaled by 0.55 to ensure that
the same copy numbers of r-protein and ribosomes were maintained in both models at the beginning and end of the
cell cycle. Over a 120 minute cell cycle the cell grows from 2.3 µm to 4.7 µm, using a lattice size of 32 × 32 × 192
with a 32 nm lattice spacing (Fig. 2b). Genes are replicated in the simulation at times determined by using the start
time and duration of DNA replication, and the position of the gene in the genome (Fig. 1b). Their location within the
cell is moved linearly across the z-axis such that their position in the daughter cell mirrors their original positioning
(Fig. 2c). Though this is not at all correct biologically, the trajectory of gene loci in the space of the cell during gene
replication is not known and this approximation is sufficient for the scope of the study.
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Comparing the two models, the initial and final species counts are practically identical for all classes of particles with
the exception of the 30S intermediates. We see that the initial intermediate count in the constant model is approximately
6× the count seen in the replicating cell model (Fig. 4a). The origin of this effect is due in part to the increased protein
concentration at the start of the cell cycle in the replicating cell model. Though the absolute protein numbers are
approximately equal, the replicating cell model volume is smaller than the constant cell volume at the start of the cell
cycle. However there appear to be other effects at play since the volume difference of 1.8× is not enough to account
for the total difference.

The changing volume due to cell growth causes particle concentrations to remain relatively constant throughout the
cell cycle (Fig. 4a). For example the ribosome concentration in the replicating cell model spans 5.5–5.9 µM, where
as in the constant model the concentration spans 2.4–4.0 µM. However in the replicating cell model the concentration
tends to peak before and after cell division (Fig. 4a). In the bottom panel of Fig. 4a, the increase in volume slows down
near the end of the cell cycle when the cell begins dividing. The ribosome number increases linearly over the whole
cell cycle, however the growth of the cell volume can no longer keep the pace with ribosome production during this
slowing, leading to an increase in ribosome concentration at the end of the cell cycle. When the cell finally divides,
the protein concentration can now relax to the steady state concentration.

Though the majority of the chemical species in the RDME simulations show no spatial heterogeneity, e.g. r-protein
(Fig. 4b, top), two classes of particles exhibit nonuniform distributions throughout the cell. Translating ribosomes,
composed of a 30S particle, a 50S particle, and a mRNA, are excluded from the nucleoid region using biased transition
rates. The transition rate from the nucleoid region to the cytoplasm is 4× greater than the reverse transition. This is
to model the excluded volume effects arising from the chromosome. This effect has been observed in single particle
tracking experiments, which showed that the fully associated ribosome is partially excluded from the nucleoid (11, 18)
region while the individual subunits are not (11).

The other particle class exhibiting a nonuniform spatial distribution is the 30S assembly intermediates (Fig. 4b
bottom). Ribosomes assemble in a well-defined binding order, where some proteins can only bind once other proteins
are associated with the nascent subunit. The earliest 30S intermediates, consisting of the primary and secondary
binding proteins associated with the 5′ and central domains of the 16S rRNA (2), are short lived and are found only
within a few hundred nanometers of the site from which the rRNA was transcribed. Due to their short lifetime, their
density tracks the position of the rRNA operon tightly. Later intermediates which are beginning to include tertiary
binding proteins diffuse farther away from the originating rRNA operon until all memory of their birthplace is washed
out.

The lack of checkpointing in the augmented simulations precluded utilizing Blue Waters for these simulations initially.
The simulations could not be checkpointed since the state necessary to describe growth and DNA replication was not
under the control of LM.We have recently developed an checkpointing mechanism independent of LM, and have begun
executing production runs on Blue Waters to support the revisions to our manuscript (1). To date, we have used 17,768
node hours on the replication model simulations.

1.2 Molecular dynamics

To complement our whole-cell modeling in (2), we performed molecular dynamics simulations of crucial intermediates
in the assembly map (Fig. 3c). In these models, assembly began with the binding of all of the primary and secondary
r-proteins in the 5′ domain leading to state 200 (see definition of state nomenclature in the caption to Fig. 3c). State
200 is the bifurcation point in which both assembly pathways begin to branch. The majority of assembly pathways
complete the central domain before starting the 3′ domain; however, a minority of the pathways involve the reverse
order.

To understand the structural basis for the bifurcation in the assembly pathways, we used MD simulations to probe
conformations near the state 200 bifurcation point (Table I) starting with the crystal structure of the complete E. coli
SSU1. All states contain the intact 16S rRNA and are prebound with r-proteins uS4, uS17, bS20, and bS16 while states
201, 200:8, and 200:15 have in addition uS7, uS8, and uS15 bound respectively. To observe the maximum fluctuations

1PDB: 2I2P
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FIGURE 5 (a) Secondary structure diagram of the 3′ domain with the center of masses defined. Center of masses are
computed from the lower four-way junction helices h29, h30, h41-h43 (green) and the upper three-way junction helices
h34-h40 (red). The exact residues are marked on the modified secondary structure diagram (42). These centers are
separated by the structural signature—marked in gray circles—h33 and numerous sequence signatures (34). (b) Time
traces of center of mass distances in the 3′ domain.

in the nucleic acid conformations, we prepared the MD simulations with a neutralizing concentration of sodium ions
with no magnesium ions present.

In the 3′ domain, all four simulations exhibited similar motions. These fluctuations are dominated by the partial
unfolding of the 3′ domain. Helices in the lower four-way junction (h29, h30, h41-h43) separate from helices in the
upper three-way junction (h34-h40) (Fig. 5a). Time traces of the center of masses for the different junctions in all
four MD simulations show that the helices separate from 40 Å to over 60 Å after 140 ns (Fig. 5b). Simultaneously,
the structural signature (34) h33 separates from h31 and h32 and becomes more solvent exposed. This is expected
since h33 is connected to these junctions. Similar results are seen in simulations with the Thermus thermophilus small
subunit2, suggesting that these motions are probably common to all bacterial organisms. The fact that states 200, 201,
200:8 or 200:15 all have similar motions suggests that there is no strong bias to binding either uS7, uS8, or uS15 and
that the next major assembly barrier, the opening of the 3′ domain, occurs further along in the assembly pathway.

Because the binding of uS7 and uS8 have aminimal effect globally on the structure of ribosome assembly intermediates,
we probed the effect of adding two 3′ domain binding r-proteins (uS9 and uS19). In the folded ribosomal small subunit,
uS9 binds to both the lower four-way- and upper three-way-junctions while uS19 binds to the structural signature h33.
As the uS19 binding site is more local than uS9, we probed its binding first uS19. Adding uS19 to the simulations
(moving from state 200:8 to 201:8, 19), tightens the structural signature in h33 and keeps h33 packed against h31-h32
and like the four previous simulations, state 201:8, 19 also shows similar unfolding of the 3′ domain (Fig. 5b). State
201:8, 9, 19, on the other hand, does not have the separation in the 3′ domain (Fig. 5b). Interestingly, all six MD
simulations showed the 3′ domain rotating away from the five-way junction in the 5′ domain, suggesting that there is
another folding barrier further along in the assembly pathway. This motion might only be arrested upon the addition
of uS5.

2PDB: 1HR0
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TABLE I Summary of MD simulations performed using Blue Waters. All systems have the following 5′ domain
r-proteins prebound: uS4, uS17, bS20, and bS16. These calculations used 200,000 node-hours over our current and
previous allocations.

Bound r-proteins

Index States Central domain 3′ domain domain Number of atoms Dimensions Simulation time (ns)

1 200 - - 1,046,000 182 × 202 × 290 140
2 201 - uS7 1,041,000 181 × 202 × 289 140
3 200:8 uS8 - 1,027,000 179 × 201 × 289 140
4 200:15 uS15 - 1,031,000 179 × 201 × 290 140
5 201:8, 19 uS8 uS7,uS19 1,052,000 180 × 205 × 290 140
6 201:8, 9, 19 uS8 uS7,uS9,uS19 1,011,000 176 × 200 × 290 140

2 Elongation factor Tu

The universally conserved heterotrimeric GTPase, elongation factor Tu, (EF-Tu) is responsible for bringing charged
tRNAs to the ribosome. To fulfill this function, EF-Tu cycles through a number of defined conformations. Starting
from a GTP-bound conformation, EF-Tu binds to charged tRNA forming a ternary complex EF-Tu·GTP·tRNA. Upon
binding to the ribosome A-site, the ternary complex becomes activated through recognition between the mRNA codon
and tRNA anti-codon. Activation initiates GTP hydrolysis and causes the dissociation of the ternary complex, releasing
the tRNA for accommodation. Finally, EF-Tu·GDP dissociates from the ribosome and can begin the next cycle after
being recharged with GTP.

Crystal structures of the pre-3 and post-hydrolysis4 EF-Tu·tRNA complexes show the different rearrangements of the
EF-Tu domains. Nonetheless, the atomicmechanism describing how the hydrolysis induced structural change causes the
tRNA release remains unknown. Using steered molecular dynamics, well-tempered metadynamics and path collective
variables (35), we sought to understand the energetics and mechanism of the EF-Tu post-hydrolysis conformational
transition.

Briefly, path collective variable uses two metrics, S(χ) and Z (χ), to describe the evolution of a system along and
orthogonal to a particular pathway respectively. S(χ) and Z (χ) have the following form:

S(χ) = lim
λ→∞

∫ 1
0 te−λ(R[χ]−R[χ](t))2dt∫ 1
0 e−λ(R[χ]−R[χ](t))2dt

(2)

and

Z (χ) = lim
λ→∞
−

1
λ

ln
∫ 1

0
e−λ(R[χ]−R[χ](t))2

dt (3)

where χ refers to the atomic coordinates of the system and R[χ] to the RMSD between the system and the pathway.
The initial path connecting the GTP to GDP form of EF-Tu is generated by picking structural snapshots, separated from
each other by ∼2 Å in RMSD space, from a SMOG trajectory (29). This initial pathway is subsequently refined using
several rounds of steered molecular dynamics (SMD).

Using 2D umbrella sampling, we explored the free energy surface of the EF-Tu transition. Umbrellas were placed on a
regular grid along S (from 1 to 24 every 0.5) and Z (from 0 to 0.6 every 0.1). Free energy calculations suggest that the
first barrier (∼0.5 kcal/mol) in the EF-Tu conformational change is the reorientation of the domains (Fig. 6ab) while the
positioning of the switch regions (Fig. 6 top, red and orange) are separated by a larger barrier (∼1 kcal/mol; Fig. 6bc).
Simulations are still ongoing and have not yet converged.

In total, 271,000 node hours were used for this project. A paper describing the conformational changes of EF-Tu
following GTP hydrolysis is currently in preparation (4).

3PDB: 1B23
4PDB: 1TUI
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FIGURE 6 Free energy surface of EF-Tu. Example structures of EF-Tu are shown: G-domain (blue), OB-folds
(gray), Switch I (red) and Switch II (orange). In (a), G-domain and OB-folds are packed together; (b) G-domain and
OB fold separate; (c) Switch I and II move downward. All-atom model build using CHARMM36 (19) and run at 1 atm
and 300 K with a 2 fs timestep for 80 ns. System contains 95,000 atoms and neutralized with 150 mM KCl + 4 mM
MgCl2. Calculations are run with GROMACS 5.0.4 (6), NAMD 2.10 (39) and Plumed 2.2 (26).
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FIGURE 7 Performance comparison between reaction kernels and site capacity. In the ribosome biogenesis simu-
lations, the new reaction kernel outperformed the original kernel due to the large number of model reactions. The
simulations using a site capacity of 16 particles per site were more performant in spite of the increased memory usage
due to the high particle density causing many overflows in the 8 particle per site lattice.

3 Continuing development of Lattice Microbes

3.1 Reaction kernel evaluation

The evaluation of the reaction kernel, the GPU-based computation responsible for simulating the stochastic nature
of chemical reactions in each subvolume, is significantly more computationally intensive in the ribosome biogenesis
models than earlier systems simulated with LM due to its sheer reaction count (1336). This model was the most
complicated chemical reaction network simulated using Lattice Microbes (LM) to date. The version of Lattice
Microbes used initially (LM 2.2) performed poorly due to the large number of reactions, taking 18 ms to perform
a step using the K20X. At a timestep of 25 µm, a 120 minute cell cycle would take over eight weeks of computer
time. To improve the performance, we employed a programmatic code generation technique to generate a bespoke
reaction kernel for each model, replacing majority of the constant memory lookups with immediate value loads and
unrolled all loops whose bounds were defined by the reaction network. This decreased the runtime on the K20X to
4.0 ms per time step, allowing for 2 hours of simulation time to be finished in 12 days. This work was prior to the
environment upgrade to CUDA 7.0 which introduced NVRTC, enabling just-in-time (JIT) compilation support for
CUDA applications. Preliminary work is under way to enable use of NVRTC in LM (5), allowing for dynamic code
generation as an option to accelerate the reaction kernel for future simulations utilizing Blue Waters.

Further improvements were made resulting in LM 2.3a leading to even faster reaction kernel evaluations. This new
reaction kernel dropped the evaluation time per step from 4.0 ms to 1.0 ms for the ribosomal biogenesis model by
using a particle-based propensity calculation (5) (see Fig. 7 for comparison using ribosome biogenesis model.) This
technique performs better on models with a large number of reactions, whereas the JIT-based acceleration is superior
for smaller chemical reaction networks. The replicating cell simulations ran slower (1.7 ms/timestep) than the constant
cell simulations (1.0 ms/timestep) for reasons yet to be determined. This figure is a measurement of the kernel runtime
and does not include the overhead due to the lattice modifications needed for cell growth.

3.2 Increased particle density

To allow for greater particle densities, we adapted LM to support lattices with larger site occupancies. Originally LM
was restricted to 8 particles per site. We have doubled this limit to allow for 16 particles per site. When more particles
occupy a lattice site than capacity allows, the extra particles are said to have “overflowed” and special handling is
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required to rectify the situation. A procedure on the CPU locates candidate neighboring lattice sites and moves the
excess particles into them. This is costly as the lattice must be from copied to host memory and then back to the
GPU after overflows are corrected. Additionally, a higher capacity lattice incurs a cost as well, since the diffusion and
reaction operators must access a larger amount of memory to account for the greater number of particles. However,
simulations that experience overflows on a frequent basis benefit from the greater capacity, as the cost of accessing
more memory is offset by the savings gained from not needing to perform overflow handling. Due to high particle
densities resulting from free r-protein and the relatively small lattice size in our ribosome biogenesis simulations, we
experienced a minor speedup by using 16 particles per site in our growth simulations (Fig. 7.)

3.3 Multi-node parallelism through MPI

We have already enabled LM to use multiple GPUs attached to a single computer to accelerate time-to-solution for an
MPD-RDME simulation (8). While LM can currently utilize MPI in a cluster environment in order to run multiple
independent replicates of a model simultaneously, a major goal is to extend the use of MPI to allow a single MPD-
RDME simulation to aggregate GPUs from multiple nodes. This will allow us to exploit multiple levels of parallelism
in a single simulation: the GPU’s inherent capacity for parallel execution and the coordinated use of multiple XK
nodes across Blue Waters. Lattice Microbes 2.3a extends the multi-GPU algorithm (8) over multiple nodes using MPI,
where a single rank on each node controls the GPU to participate in a one-dimensional spatial decomposition of the
simulation domain. Future work will focus on multi-dimensional decomposition strategies to improve scalability over
large numbers of GPU equipped nodes.

Preliminary work is complete on porting the MPI feature for MPD-RDME onto Blue Waters, as demonstrated by the
benchmark results in figure Fig. 8. Four benchmark systems are used to study the run-time scaling over multiple nodes
over a range of biologically-relevant system sizes. The E. coli benchmark is a 64 × 64 × 128 lattice, dividing E. coli is
a 64× 64× 256 lattice, yeast is a 2563 lattice, and the blood cell benchmark is a 5123 lattice. Each system contains the
same particle density, and a test network of four reactions.

Through the development of these improvements, we have consumed 63 node hours.

4 Population flux balance analysis of Saccharomyces cerevisiae

A cell’s phenotype—its set of distinguishing observable traits—can be as much an emergent property of the cell’s
environment and gene expression state as it is a result of the cell’s genotype. While some observables, like an
organism’s response to Gram staining, can be immutable and tied to specific genes, others can be more fluid, varying
from cell-to-cell with the random fluctuations in each cell’s molecular makeup (12, 21, 30, 32) A cell might by chance
over- or under-express the enzymes involved in a given biosynthetic pathway, in which case the over- or underproduction
of that pathway’s end product might signify a naturally occurring phenotype. Understanding this type of phenotypic
variability requires models capable of connecting comprehensive gene expression profiles with cellular function.

Population flux balance analysis (popFBA), wherein protein counts are sampled from experimental distributions in order
to apply constraints to a genome-scale model of metabolism, was recently used to describe metabolic heterogeneity
in Escherichia coli (14). Here we extend the method in order to account for correlations in protein expression arising
from co-regulation and apply it to the Yeast 7.6 (13) metabolic reconstruction of Saccharomyces cerevisiae. We find
excellent agreement between the predicted intracellular fluxes and those determined experimentally by a recent 13C
fluxomics experiment (20). In particular, popFBA recovers the Crabtree effect (the reliance on fermentative metabolism
even in the presence of oxygen) where unconstrained FBA predicts mainly respiration. We also find a broad distribution
of growth rates that match experimental observations, and we characterize several metabolic phenotypes within our
modeled populations that make use of sometimes complex reaction pathways in order to grow given the internal
(enzyme-associated) and external (substrate-associated) constraints imposed. Finally we investigate the degeneracy
of the sets of protein-associated constraints that are necessary to give rise to growth rate distributions that agree with
experiment. We find that a core set of between 30 and 55 constraints, depending on growth medium, are essential but
that additional constraints are still necessary to reproduce the observed growth curves.
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FIGURE 8 MPD-RDME over MPI Benchmark results. Four benchmark systems that are representative sizes of
systems of interest— an E. coli cell, an E. coli cell undergoing cell division, a small yeast cell, and a red blood cell.
Each benchmark system contains a network of four reactions, and maintain a constant density of particles. The average
wall-clock time for each simulation step is shown for each of the XK node counts tested. MPI-acceleration is crucial
for simulating large, eukaryotic cells.
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One of the main achievements of popFBA is the ability to predict growth rate distributions based on initial molecular
constraints imposed on the metabolic map. These growth rate distributions display diverse subpopulations, each one
with characteristic metabolic activities. Since popFBA depends on an initial selection of experimentally determined
constraints, namely the turnover numbers (Kcat) from enzymes present in the metabolic map, a new stochastic search
method was developed to determine how sensitive the final growth distribution is to the initial constraint selection.
Blue Waters was used to run the extensive calculations needed to randomly search the space of possible constraint
sets by running a parallel implementation of a Micro Genetic Algorithm (43). After obtaining 10 different constraint
sets that produce growth rate distributions which exactly match the experimentally observed distributions (Fig. 9), we
could see that very few constraints are completely incompatible with the experimentally observed distribution, i.e.
no solution was found which used that constraint. Moreover, no individual Kcat is absolutely essential to producing
realistic growth rate distributions, meaning no constraint was used in all 10 optimizations.

Performing these optimizations consumed 1,400 node hours.
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