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2 Executive Summary

The goal of our project is to develop fast and scalable algorithms for solving large instances of
Linear Assignment Problem (LAP) and Quadratic Assignment Problem (QAP) using Graphics
Processing Units (GPU). LAP is polynomial-time solvable with cubic worst case complexity, while
the QAP is strongly NP-Hard. To solve a linearized model of the QAP using branch-and-bound,
lower bounds must be calculated using the Lagrangian dual technique, in which a large number of
LAPs must be solved efficiently. Additionally, in a branch-and-bound scheme, a large number of
nodes must be explored in order to find a provable optimal solution. To this end, we have used
Blue Waters to develop: (1) A GPU-accelerated Hungarian algorithm for solving large LAPs in
an efficient manner; (2) A GPU-accelerated Lagrangian dual ascent heuristic for obtaining lower
bounds on the QAP. These algorithms will be used in parallel branch-and-bound scheme to solve
large QAPs to optimality.

3 Description of Research Activities and Results

3.1 Key Challenges

Assignment Problems are fundamental to the discovery in diverse branches of science and engi-
neering. Some of their applications include information fusion, protein-protein interaction analysis,
facilities design, vehicle routing and resource scheduling. To gain meaningful insights, many appli-
cations demand quick solutions to large instances of Assignment Problems containing hundreds of
thousands of vertices. This makes it incredibly challenging for the sequential algorithms designed
for a single processor. Therefore, designing fast and scalable algorithms suitable for the state-
of-the-art parallel programming architectures is essential. In this research, we intend to propose
novel parallel algorithms for the Compute Unified Device Architecture (CUDA) enabled NVIDIA
Graphics Processing Units (GPUs), to solve the following two Assignment Problems.
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Linear Assignment Problem. The objective of the Linear Assignment Problem (LAP) is to
assign n resources to n tasks such that the total cost of the assignment is minimized. The mathe-
matical formulation for the LAP is:
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The decision variable x;, = 1, if resource 7 is assigned to task p and 0 otherwise. The constraints
enforce that each resource should be assigned to exactly one task and each task should be assigned
to exactly one resource. b;, is the cost of assigning resource 7 to task p.

LAP is one of the most well-studied optimization problems that can be solved in polynomial
time. Until now, many efficient sequential algorithms have been proposed in the literature, such
as the famous Hungarian algorithm (Kuhn| [1955)), the Auction algorithm (Bertsekas, 1990), and
the shortest path algorithm (Jonker and Volgenant, 1987)). The theoretical complexity of the most
efficient implementation of the Hungarian or the shortest path algorithm is O(n?).

Owing to their cubic worst-case complexity, sequential algorithms can prove to be a significant
bottleneck, for solving large instances of the LAP. Therefore, a parallel algorithm is required,
which can take advantage of a specific architecture and divide the work among multiple processors
to alleviate the computational burden. We chose to parallelize the famous Hungarian algorithm
(Kuhn, 1955, [Munkres, 1957) on a GPU, which has theoretical complexity is O(n?).

Quadratic Assignment Problem. The Quadratic Assignment Problem (QAP) is one of the
oldest mathematical problems in the literature and it has received substantial attention from the
researchers around the world. QAP was originally introduced by Koopmans and Beckmann! (1957)
as a mathematical model to locate indivisible economical activities (such as facilities) on a set of
locations and the cost of the assignment is a function of both distance and flow. The objective is
to assign each facility to a location so as to minimize a quadratic cost function. The generalized
mathematical formulation for the QAP, given by |Lawler (1963)), can be written as follows:
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Here, x;, = 1 if facility ¢ is assigned to location p and 0 otherwise. The constraints enforce that
each facility should go to exactly one location and each location should have exactly one facility.

Despite having the same constraint set as the LAP, the QAP is a strongly NP-hard problem
(Sahni and Gonzalez, 1976), i.e., it cannot be solved efficiently within a guaranteed time limit.
Additionally, it is difficult to find a provable e-optimal solution to QAP. The quadratic nature of
the objective function also adds to the solution complexity. One of the ways of solving the QAP
is to convert it into a Mixed Integer Linear Program (MILP) by introducing additional variables
and constraints. Different linearizations were proposed by Lawler| (1963), Kautman and Broeckx
(1978), Frieze and Yadegar (1983), Adams and Johnson (1994)), |Adams et al.| (2007)), etc. We
chose to parallelize the Lagrangian dual ascent algorithm for Level-2 Refactorization-Linearization
Technique (RLT2) proposed by |Adams et al.| (2007), in which we need to solve O(n*) LAPs and
adjust O(n%) Lagrange multipliers to obtain a strong lower bound on the QAP.



3.2 Why It Matters

Both LAP and QAP have many theoretical and practical applications. LAP appears as an inner
problem in many of the NP-hard problems, such as Traveling Salesman Problem (TSP), Vehicle
Routing Problem (VRP), Data Association (DA), etc. Therefore, having a fast, scalable, and cost
effective LAP solver is extremely important for many theoretical and practical problems. QAP may
serve as a specialization to many “harder” optimization problems, such as the Graph Association
(GA), Vehicle Routing Problem (VRP), etc., in alternative formulations. Therefore, to solve these
problems efficiently, we need to solve the QAP subproblems efficiently. As a result, a fast and
scalable QAP solver coupled with a fast LAP solver can be a powerful tool for researchers working
on such NP-hard problems.

Since we are addressing the two fundamental Assignment Problems, the theory and algorithms
developed in this research can be potentially extended to other problems from this class. Therefore,
this research can be seen as foundational work in parallel/accelerated algorithms for a broad class
of Assignment Problems. Since the Assignment Problems are pervasive in science and engineering
applications, these efficient algorithms will be extremely valuable to the researchers dealing with
massive instances of these problems, which will pave the way to new breakthroughs in science and
engineering through the analysis of “big data.”

3.3 Why Blue Waters

In a typical branch-and-bound tree, we need to explore a large number of nodes in order to find an
optimal solution. Also, as the problem size grows, the number of nodes that need to be explored
grows exponentially. Therefore, we need a large number of processors which can explore the solution
space in parallel. Additionally, the GPU-accelerated dual ascent procedure benefits from the large
number of powerful GPU-enabled processors available at the Blue Waters facility. Coupling the
parallel branch-and-bound with the fast GPU-based lower bounding techniques will enable us to
solve large-sized problems from the QAPLIB (Burkard et al., [1997), which still remain unsolved.

3.4 Accomplishments

Results for LAP. In our recent paper (Date and Nagi, 2016)), we developed parallel versions of
the Hungarian algorithm, specifically for CUDA-enabled NVIDIA GPUs. In this paper, we tested
two versions of the Hungarian algorithm: (1) The classical Kuhn-Munkres (Munkres| |1957) ver-
sion (CUDA-CL), which has a complexity of O(n*); and (2) The alternating tree version (Lawler,
1976, Papadimitriou and Steiglitz, [1998) (CUDA-TR), which has a complexity of O(n3). The main
contribution of our work is an efficient parallelization of the augmenting path search phase of the
Hungarian algorithm, which is the most time consuming phase. In our accelerated algorithm, mul-
tiple CUDA threads jointly search for augmenting paths from all the unassigned rows, using parallel
breadth-first-search (P-BFS). Our algorithm finds more than one assignments in each iteration, and
therefore, converges to the optimal solution in fewer number of iterations (as seen in Table[l)). We
tested both our accelerated algorithms on randomly generated problem instances and compared
the execution times with those of the sequential algorithm and an OpenMP version executed on the
CPU. The computational results for small-scale problems are shown in Fig. [I, The computational
results for large-scale problems are shown in Fig. [2l These results clearly show that as the problem
size grows, the parallel algorithms become superior to the sequential algorithm. Also, the alter-
nating tree version is the most efficient version for dense cost matrices which have fewer zero-cost
elements per row/column. Therefore, this version is best suited for LAPs with non-integer cost
matrices.



Table 1: Number of assignments found during different stages for CU-TREE

Initial Assignments in Iterations
n Assignments | [1-5] | [6-10] | [11-15] | [16-20] | [21-25] | [26-30] | [31-35]
1000 866 96 26 6 6
2000 1745 177 47 18 10 3
3000 2608 203 143 24 10 6
4000 3473 254 184 52 21 11 4 1
5000 4316 354 231 61 10 22 4 2
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Figure 1: Execution time for small problems with cost range [0, n]
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Figure 2: Execution time (s) for large problems with different cost ranges
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Figure 3: Architecture for parallel /accelerated dual ascent

Table 2: Lower bound strength for RLT2 dual ascent — 2000 iterations

Problem | LAP Counts (X, Y, Z) | # of GPUs LB OPT | % GAP | Itn time (s)
Nugl8 (1, 324, 93636) 1 1909.29 | 1930 1.08 5.07
Nug20 (1, 400, 144400) 1 2511.79 | 2570 2.32 10.12
Nug22 (1, 484, 213444) 2 2603.84 | 2650 1.77 10.64
Nug25 (1, 625, 360000) 4 3582.83 | 3744 4.50 12.23
Nug30 (1, 900, 518400) 15 5755.35 | 6124 6.41 12.86

Results for QAP. We designed a parallel Lagrangian dual ascent heuristic for solving RLT2 using
hybrid MPI+CUDA architecture (as seen in Fig. [3). The O(n*) LAPs are split across these GPUs
and solved using our GPU-accelerated Hungarian algorithm, while the O(n%) Lagrange multipliers
are updated by multiple CUDA threads in parallel.

We tested the GPU-accelerated Dual Ascent for RLT2, coupled with the GPU-accelerated
Hungarian algorithm on the various Nugent problem sets (Nugl8, Nug20, Nug22, Nug25, and
Nug30) from the QAPLIB. As shown in Table [2| our parallel Dual Ascent implementation provides
strong lower bounds when tested on up to 15 GPUs from Blue Waters. We expect to see similar
scaling behavior for large problems with 30 < n < 40.

In the branch-and-bound scheme, the lower bounds mentioned above proved to be extremely
valuable. We tested the branch-and-bound algorithm on the “medium-sized” instances (Nugls,
Nug20, Nug22, and Nug25). These tests looked very promising (see Table , since all these
problems were solved within two hours. The larger instances Nug25 and Nug30 have been previously
solved to optimality by other researchers, however, they are extremely challenging and require
intense computational effort. We will be attempting to solve these (and other larger) problems and
we believe that our current approach will prove to be extremely efficient.

3.5 Next Generation Work

Our ultimate objective through this research is to provide efficient solution methods for a class of
Assignment Problems. These problems arise in diverse branches of science and engineering and they
are part of many cutting edge projects with high socio-economic impact. Using our methods, we
hope that scientists and engineers will be able to solve Assignment Problems containing hundreds
of thousands of vertices within a matter of minutes, leading to transformative discoveries. We
intend to package the sophisticated algorithms stemming from this research into a programming



Table 3: Branch-and-bound results on Nugent problems

Problem | OPT | PE Banks | PEs per bank | Nodes | Total Time (min) PE.: Bank Utilization
Min | Avg Max
Nugl8 1930 18 1 306 9.26 0.524 | 0.805 | 0.986
Nug20f 2570 20 1 216 56.51 0.155 | 0.549 | 0.994
Nug22 2650 22 2 462 105.05 0.651 | 0.729 | 0.998
Nug25' | 3744 200 4 19419 436.12 0.688 | 0.864 | 0.975

fSymmetry elimination rules were used for these problem instances.

library, which can be used by scientists and engineers across the world, to not only solve large-scale
Assignment Problems, but to analyze and compare the performance of different algorithms, thereby
ensuring continued advancement of science and engineering.
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