Hardware Acceleration of Deep Learning

PI: Tao Xie
Department of Computer Science, University of Illinois at Urbana-Champaign
Urbana, Illinois, USA 61801
Email: taoxie@illinois.edu
co-PI: Yuan Xie
Electrical and Computer Engineering Department, University of California, Santa Barbara
Santa Barbara, California, USA 93106
Email: yuanxie@ece.ucsb.edu
Maohua Zhu
Electrical and Computer Engineering Department, University of California, Santa Barbara
Santa Barbara, California, USA 93106
Email: maohuazhu@ece.ucsb.edu

Abstract—Our project aims at evaluating the Blue Waters
platform for hardware acceleration of deep learning for big data
image analytics and machine translation. To achieve near real-
time learning, efforts must be paid for both hardware scaling
out (increasing the number of compute nodes in a cluster)
and scaling up (improving the throughput of a single node by
inserting hardware accelerators). In this work, we evaluated
the performance of scaling up using the GPU enabled node
(XK7) for training convolutional neural networks. The key
observation we got is that different types of neural networks
(e.g. convolutional neural networks, long short-term memory)
have different computation per byte so that current resource
allocation approaches cannot achieve optimal efficiency for a
multi-node system running multiple type of neural networks.
Base on this observation, we will further model the correlation
between the system performance and resource allocation and
workload scheduling policy in the next generation work on the
Blue Waters.

I. INTRODUCTION

Deep learning has been widely used in applications such as
image classification, speech processing and object recognition.
The huge amount of training data required by the deep neural
networks asks for more computing power to keep pace of the
advance of state of the art accuracy of these tasks. Mainstream
deep learning facilities are CPU-based clusters, which usually
consist of thousands of compute nodes. As the major computa-
tion of deep learning is convolution and matrix multiplication,
which is suitable for Graphic Processing Units (GPUs) to
process, modern deep learning facilities are often equipped
with GPUs as hardware accelerators. However, straightforward
implementation of deep neural networks on such GPU enabled
compute nodes will lead to under-utilization of compute re-
sources, especially for multi-node systems such as the Blue
Waters. Therefore, there is a strong motivation to evaluate and
characterize the deep learning workload on the GPU-enabled
nodes.

In this work, we evaluated the performance of popular types
of deep neural networks on a GPU enabled supercomputer
(XK7 nodes on the Blue Waters). From the evaluation results,
we observed good scalability of neural networks on the Blue
Waters supercomputer. Meanwhile, among the three types of
neural network layers we evaluated, that is, convolutional

layers, fully connected layers, and long short-term memory
(LSTM) [1] layers, the convolutional layers have the best
scalability. The difference among the three types of network
layers in terms of scalability comes from the variation of
computation per byte in each layer. Given the same number
of weights, the convolution layers have one order magnitude
larger number of multiply-accumulation (MAC) operations
since the computation complexity of convolution is higher than
matrix multiplications. Furthermore, the convolutional layers
employ the weight sharing technique, which dramatically
increases the computation per byte of the network.

Based on these observations, we continue to explore the
design space of mapping different kinds of neural networks
onto the GPU-enabled supercomputer. In real-world data cen-
ters, there are numerous neural network-based applications
running concurrently. Since the optimal number of nodes
allocated for each type of neural networks varies, we should
design a scheduling method to achieve the best efficiency. In
next generation of work, we will conduct more application
characterization on the multiple-type neural network workload
on the Blue Waters.

II. WORKLOAD DESCRIPTION
A. Convolutional Neural Networks

In the last several years, convolutional neural networks
(CNNs) have achieved the state-of-the-art accuracy in various
tasks such as image classification and object recognition,
thanks to its high representational power. A convolutional
neural network is a kind of deep neural networks which has
one or more convolutional layers. Neurons in convolutional
layers share connection weights so that the parameter space
is much smaller than other kinds of deep neural networks.
Therefore, it can be trained by back propagation method di-
rectly without any pre-training. However, as problems become
more complex, CNN solutions require larger networks and
more training data. For example, the ILSVRC-2012 winner
AlexNet [2] has 60 million parameters and 650,000 neurons,
consisting of five convolutional layers. Two years later, the
ILSVRC-2014 winner VGG-16 [3] improved the accuracy by
another 10% with 138 million parameters. And this trend of



the growing size of networks will continue as the amount of
data keeps increasing exponentially. It usually takes weeks
to a month to train such a big model even with the help of
a thousand-node cluster. Furthermore, for a neural network
that is customized for a specific problem, some training
hyper-parameters like learning rate and momentum have to
be swept to ensure the network to converge on the global
minimum, which makes the training process even longer. To
accelerate the training of neural networks, GPUs are widely
used as accelerators for both single-node and cluster-based
deep learning systems.

B. Long Short-Term Memory

Long Short-Term Memory (LSTM) is one popular type of
recurrent neural networks (RNNs) used in speech recognition
and machine translation. LSTM has a more complex neuron
cell structure than CNNG.

Fig. 1: Basic LSTM cell

The LSTM cells used in this paper are all basic LSTM cells.
For each cell, the forward propagation flow is as below:

iy = o(Wiay + Ulhy_y +bY)
fi= O’(fot + Ufht_l + bf)
Oy = U(W"xt + Uohtfl + bo)
gt = tanh(W9xy + U1 + b9)
ct = froci_1+itog
hi = o¢ o tanh(cy)

As shown in Figure (1] 4;, f;, and o, stand for input gate,
forget gate, and output gate, respectively. These sigmoid-based
gates (o stands for sigmoid) are used to prevent irrelevant input
from affecting the memory cell (c;). The new cell state (g;) is
a preliminary summary of the current input from the previous
layer and the previous status of current layer. The final hidden

status h; is the output of the LSTM cell if it is seen as a black
box.

C. Distributed DNN Workload

Distributed neural networks allocate one compute node for
each replica, which is a part of the training model. The training
process of each layer in each replica consists of three phases:

1) Receiving output data from the previous layer of other
replicas and feeding them into the device memory;

2) Executing the device kernel to compute the output data
of current layer;

3) Sending the output data of the current layer to other
replicas.

The performance bottleneck of this straightforward implemen-
tation is that Step 1 and 3 introduce very long latency, which
is determined by the longest unpredictable network latency
between different compute nodes. The underlying reason for
the performance loss is the under-utilization of hardware
resources of the GPU accelerators. In Step 1 and 3, compute
units are completely idle waiting the data synchronization.
While in Step 2, the DMA units are doing nothing since the
compute units are executing the kernel functions. Therefore,
overlapping the data synchronization and the kernel execution
will reduce the total running time of the training process. To
achieve this goal, we break down the replicas into finer grained
replicas with the same number of compute nodes used. Then
the kernel execution of one replica can run simultaneously with
data synchronization of other replicas. Ideally, if the replica
break-down does not introduce any communication overhead,
the more replicas we have in each node, the better performance
we will get. However, the communication overhead is not
negligible so we have to find the best number of replicas
per node. Since the ratio of communication over computation
varies across different types of neural networks, we need
to carefully evaluate and design workload mapping methods
to achieve the best efficiency on multi-node GPU-enabled
machines.

D. Why Blue Waters

The Blue Waters offer XK7 nodes which consist of one
AMD 8-core CPU and one NVIDIA K20 GPU. As GPUs are
more suitable than CPUs for convolution and matrix multi-
plications, which are the major computation in deep learning,
state-of-the-art deep learning facilities widely employ GPUs
as their hardware accelerators. The Blue Waters offers us an
opportunity to do research on optimization for deep learning
cluster with GPUs. Especially the system provides CUDA
programming environment, which enables us to customize the
specific functions to be executed on GPUs.

III. EXPERIMENT SETUP AND RESULTS

In this section, we present the evaluation results generated
from our experiments on the Blue Waters. To evaluate the
performance of different types of neural networks, we choose a
popular neural network, AlexNet, for referece of convolutional
layer and fully connected layer topologies. AlexNet has one
convolution layer of (224,3,11), (the numbers are the size
of input image, the number of channels and the size of filter
kernels), one convolution layer of (55,96,5), one convolu-
tion layer of (27,256,3) and two convolutional layers of
(13,384, 3). The size of the fully connected layers in AlexNet



Deep Bench Performance

160

140

Running Time (ms)

= =

N S D (0] o N
o o o o o o

o

Number of Nodes

FC -Conv

LSTM

Fig. 2: Performance Evaluation of Different Layer Types

are 4096, 4096 and 1000, respectively. For the topology of
LSTM RNNs, we choose a charcter-based language model
of which all recurrent layers have 128 neurons. Since all the
LSTM layers are the same, we only use one LSTM layer to
run the experiment.

We implemented these neural network layers based on the
DeepBench[4], which is a performance benchmark for deep
learning hardware accelerators. We modified the DeepBench
to change the OpenAPI originally used to the platform API of
the Blue Waters. All nodes allocated are XK7 GPU enabled
nodes.

Figure [2| shows the running time of each type of neural
networks on different number of nodes. In the figure we can
see that the running time of all the three types of layers
reduces along with the increase of the nodes used in parallel.
The Blue Waters system shows good scalability, though there
is communication overhead which makes the speedup sub-
linear. From Figure 2| we all observe that the speedup for
different types of neural networks are different since they
have different computation per byte. This observation indicates
that if we cannot achieve the best performance or system
efficiency if we use one single resource allocation scheme
for all the three types of neural networks. For example, the
communication dominates the latency for LSTM layers and
fully connect layers in the case where we allocate 8 nodes,

while convolutional layers are still computation-bound. Based
on this observation, we will design new resource allocation
and algorithm mapping techniques to achieve better system
performance given a fixed amout of workload.

IV. NEXT GENERATION WORK

In future work, we will build a model to find the best number
of nodes for each type of neural network layers given a specific
size. To verify our model against real-world supercomputer
systems, we need to run more experiments on the Blue Waters
to compare with the prediction of our model. The experiments
will still be based on XK7 nodes which provide GPU support.
We expect a conference paper submission after finishing of
the next generation work.

REFERENCES

[1] S. Hochreiter, S. Hochreiter, J. Schmidhuber, and J. Schmidhuber, “Long
short-term memory.,” Neural computation, vol. 9, no. 8, pp. 1735-80,
1997.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information
processing systems, pp. 1097-1105, 2012.

[3] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” pp. 1-14, 2015.

[4] “Deepbench.” https://github.com/baidu-research/DeepBench. Accessed:

2016-10-30.


https://github.com/baidu-research/DeepBench

	Introduction
	Workload Description
	Convolutional Neural Networks
	Long Short-Term Memory
	Distributed DNN Workload
	Why Blue Waters

	Experiment Setup and Results
	Next Generation Work
	References

