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This project addressed important fundamental questions concerning thermalization and information trans-
port in strongly interacting generic quantum matter. It provided important details for a better understanding
of the mechanism of thermalization in isolated quantum systems and the nature of the many-body localization
transition. We were able to perform exact simulations of very large systems up to L = 31 spins 1/2, which
is a particularly challenging task due to the exponential growth of the Hilbert space which was as large as

3-108.

Our results led to the discovery of subdominant corrections to the eigenstate thermalization hypothesis
in subdiffusive systems and surprising features of the probability distributions of matrix elements of local
operators in the eigenbasis of the Hamiltonian. They pointed to a coexistence of thermal and localized states
at the many-body localization transition and they identified slow information transport prior to the transition,
which is reflected in a power law light cone structure of the out of time ordered correlation function.
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II. DESCRIPTION OF RESEARCH ACTIVITIES AND RESULTS
A. Key Challenges

We focus on one dimensional isolated quantum systems
which are relevant for our fundamental understanding of sta-
tistical mechanics and thermodynamics as well as in their
experimental realization in cold atomic systems. Generi-
cally, such systems are expected to thermalize via the so
called Eigenstate thermalization hypothesis (ETH)' ¢, which
assumes that matrix elements of local operators in the eigen-
basis of the Hamiltonian become a smooth function of energy
in the thermodynamic limit. For finite systems, ETH predicts
noise on top of this smooth function of energy, which has a
Gaussian probability distribution whose variance decreases
exponentially with system size. ETH ensures that a finite
system relaxes to thermodynamic equilibrium in the limit of
very long times, if prepared initially to a nonequilibrium state
and in the absence of a heat bath or any other contact to the
environment.

While such a behavior is expected for generic interact-
ing quantum systems without conservation laws that might
prevent thermalization, surprisingly it turns out that there
are strongly disordered systems which do not thermalize
even though they are strongly correlated. The mechanism
for this absence of thermalization is similar to what hap-
pens in disordered noninteracting models that exhibit An-
derson localization®: The systems develops robust integrabil-

ity at strong enough disorder through the formation of local
conserved quantities, which are called 1-bits’® and becomes
many-body localized">"* (MBL).

Many numerical studies'>™*> on small systems have ob-
served so far the phenomenology in one dimensional spin
models that at weak disorder ETH is valid, while at strong
disorder it is broken and the system is in the MBL phase, how-
ever a detailed theory of the MBL transition is still lacking,.
Therefore, it is important to obtain accurate results for very
large systems in order to understand the influence of finite
size effects and to approach the sizes relevant for experiments
(several hundred particles'®). In this project, we studied the
random field Heisenberg chain given by the Hamiltonian

H= JZSiSH—l + hle, (1)

where the disordered magnetic fields h; on site ¢ are ran-
domly drawn from a box distribution between —W and
W, with the disorder strength W in units of the interac-
tion strength J = 1. Previous studies'>'* established that
this model exhibits an MBL transition at a critical disorder
strength W, ~ 3.7. At intermediate disorder, in the ergodic
phase, it was suggested that the dynamics in the system is
slower than diffusive37'8,

The key challenges we focussed on in this project, were

1. to provide high precision numerical evidence for slow
dynamics in the ergodic phase and the consequences
for ETH.

2. to study the nature of transport of quantum informa-
tion in the ergodic phase, where particle transport is
subdiffusive.

3. to address the nature of the MBL transition.



B. Why it Matters

The impact of this project is both fundamental and tech-
nical. Clearly, a theoretical understanding of thermalization
and the conditions for its failure is an important contribution
to fundamental research. By providing exact numerical re-
sults in realistic model systems, it is possible to consider in
great detail various aspects of thermalization and numerical
observations will drive future theoretical work, for which we
already made first steps in this project.

The technological aspect is to push the feasible problem di-
mensions on an extremely powerful machine, exploring lim-
itations of current numerical methods. Here, we have used
a method for the calculation of eigenpairs in the middle of
the spectrum of very large sparse matrices using a shift and
invert technique. The inversion step is based on a massively
parallel implementation of the Gauss elimination algorithm
provided by the MUMPS library'?*°, allowing us to push the
problem dimension to more than 700000. The second method
that we use is exact time evolution of quantum wave func-
tions. It is based on the product of the matrix exponential
exp(—¢Ht) and the wave function vector |¢), where t is the
time variable and H is the (sparse) Hamiltonian operator. The
action of the matrix exponential on the wave function vector
can be efficiently calculated*’ by projecting the matrix expo-
nential onto the Krylov space spanned by the wave function
at time t=o, which can be carried out in a massively parallel
way. Using this methods, we were able to simulate problems
with dimensions up to 3 - 108 using 64 Blue Waters XE nodes
with 2048 highly optimized MPI processes. Our code is based
on the PETSC**?3 and SLEPC** libraries.

Our experience from these calculations is very useful for
future projects.

C. Why Blue Waters

Blue Waters is a uniquely powerful computational re-
source which permits scientific achievements which are oth-
erwise not possible. The research questions on thermaliza-
tion in interacting isolated quantum systems which we ad-
dressed in this project can be formulated as challenging linear
algebra problems, which are ideally suited for Blue Waters
since the can be carried out in a massively parallel way. How-
ever, these problems are not embarrassingly parallel, since
communication between the MPI processes involved in one
simulation is paramount. In particular, the largest problems
we were able to simulate do not fit in the memory of a single
XE node and can therefore only be solved by distributing the
memory over a large number of nodes.

In order to efficiently exploit a massively parallel machine
like Blue Waters, it is important to base all codes on vendor
optimized libraries for fast inter node communication like
MPI and for Linear Algebra like Cray’s 1ibsci. The Blue
Waters staff was extremely helpful in helping to compile the
relevant codes and to link them against optimal implemen-
tations of MPI. The quick responsiveness and competence of
the staff allowed for an efficient execution of the project, such

that the all research goals were met and could be extended far
beyond the scope of the initial proposal.

A crucial ingredient for the success of this project was the
flexible extension of the initial timeframe which permitted
the study of information propagation in a very large scale
calculation®, which required much more time to prepare
than anticipated and could be completed successfully at the
end of the extended allocation period.

D. Accomplishments

The allocation of resources on Blue Waters and in particu-
lar the generous availability of more than twice the amount
of CPU cycles initially granted by using the “low” queue al-
lowed us to address a large number of research questions
which led to 5 well appreciated publications. The following
accomplishments could be achieved.
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FIG. 1. Power law light cone structure in the operator norm of the
commutator [S7,S?] as a function of time ¢ and separation z =
1 — j. i is fixed to 0 and two disorder strengths W are displayed for
the L = 31 Heisenberg chain. These results are averaged over 50 to
100 disorder realizations.

« Better understanding of the MBL transition. In this
subproject, we considered the scaling of the entangle-
ment entropy in high energy eigenstates with subsys-
tem size very close to the MBL transition. We were
able to demonstrate that the probability distribution of
the slope of the entanglement entropy (as a function
of subsystem size) becomes bimodal at the MBL tran-
sition even in single realizations of disorder. This is an
important observation and points to a highly nontrivial
nature of the transition. This research was published in
Ref.?¢.

Generalized Thermalization Hypothesis. Using a very
large scale simulation of the random field Heisenberg
chain, partly relying on data from a previous project
carried out on EOS (CALMIP, France), we studied ma-
trix elements of local operators in the eigenbasis of the
Hamiltonian to test ETH. In the subdiffusive regime,



we discovered strongly non-Gaussian probability dis-
tributions using a tremendous amount of matrix ele-
ments to obtain very high precision statistics and to

resolve the tails of the distribution. In a subsequent

work, we could connect the offdiagonal matrix ele-

ments of the local magnetization to spin transport after
a quench, which we simulated on Blue Waters using

exact time evolution techniques. This led to the dis-

covery of a generalized thermalization ansatz, which

exhibits a slower scaling of the variance of the noise
distribution with system size in systems which have
subdiffusive transport. We have published these find-
ings in Ref.?” and*®.

Review article on the ergodic side of the MBL transi-
tion. The current knowledge of the nature of the slow
transport prior to the MBL transition at intermediate
disorder is based on numerics of small to intermedi-

ate system sizes and full of puzzles. We have classified

and thoroughly discussed the state of the literature and
provided a detailed comparison of numerical results for
transport exponents, adding new results obtained on
Blue Waters to test important relations between these
exponents. The review article is available as a preprint
in Ref.*.

Information propagation in isolated quantum systems.
We have studied the information transport in the ran-

dom Heisenberg chain in terms of the time evolution of

the commutator of two local operators [S7, S7], which
vanishes at time t=o0 for ¢ # j. Due to information
propagation, the commutator acquires a finite value af-
ter a time which depends on the separation i — j of the
two operators. We have developed a method based on
Lévy’s lemma that allows for the calculation of the op-

erator norm of the commutator by exact propagation of

typical wave functions in time. This allowed us to ob-
tain exact results for unprecedented system sizes, up to
L = 31 spins, corresponding to a Hilbert space dimen-
sion of about 3 - 10% and more than doubling the sys-

tem size of previous calculations. These large system
sizes allowed us to study the shape of the “light-cone”
within which information propagates and to establish
that slow information transport leads to a power law
shape of the light cone in contrast to a linear light cone
which we find in the case of clean diffusion. An il-
lustration of the main result obtained from the largest
simulation using 64 Blue Waters XE nodes for a single
disorder realization is shown in Fig. 1. We also tested
important predictions on the growth of the commuta-
tor with time and the decay with separation and found
that surprisingly there is no exponential regime. This
research is potentially of very high impact and avail-
able as a preprint in Ref.*>.
III. LIST OF PUBLICATIONS

Research in this Blue Waters project led to 5

publications*~>°, one of which is published in Physical
Review Letters, two in Physical Review B and two preprints,
one submitted to Annalen der Physik* and one to Nature
Physics™.
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