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1 Executive summary

This research aims to quantify key uncertainties associated with simulating aerosol-climate
impacts. Aerosol particles influence the large-scale dynamics of the atmosphere and the
Earth’s climate because they interact with solar radiation, both directly by scattering and
absorbing light, and indirectly by acting as cloud condensation nuclei. Their sizes range from
nanometers to micrometers, and a major source of difficulty in understanding the aerosol
climate impact is due to scale interactions because modeling those interactions is computa-
tionally expensive. The particle-resolved 3D model WRF-PartMC-MOSAIC, developed by
the PI and collaborators, has the unique ability to track size and composition information
on a per-particle level to address this problem, while remaining computationally feasible.
In combination with efficient algorithms, a resource with the capabilities of Blue Waters is
essential to perform WRF-PartMC-MOSAIC model simulations. This allocation has taken
the significant step of taking WRF-PartMC-MOSAIC to the regional scale where the impor-
tance of aerosol composition in determining aerosol-cloud and aerosol-radiation interactions
can be explored.

2 Research activities and results

Particle-resolved modeling provides insights into uncertainties regarding aerosol
impacts on climate prediction. Many of the greatest challenges in atmospheric mod-
eling and simulation involve the treatment of aerosol particles, ranging from the prediction
of local effects on human health (Dockery and Pope, 1996) to the understanding of the
global radiation budget via the aerosol indirect and direct effects (Stocker et al., 2013).
Aerosol modeling has proved difficult because of the complex microscale physics of individ-
ual particles, which are not individually resolved in models — largely due to computational
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constraints. Current methods of representing the high-dimensional and multi-scale nature
of aerosol populations still make large simplifications. While this makes computation much
cheaper, it introduces unknown errors into model calculations. This has far reaching con-
sequences for the estimation of climate-relevant aerosol quantities, such as to calculate the
particles’ light scattering and absorption properties, as well as their abilities to form cloud
droplets.

To overcome the current limitations in aerosol modeling, the particle-resolved aerosol
model PartMC-MOSAIC (Riemer et al., 2009) was developed. This model stores the com-
position of many individual particles directly within a well-mixed computational volume.
PartMC-MOSAIC was coupled with the Weather and Research Forecast (WRF) model, a
state-of-the-art, publicly available fluid dynamics code for numerical weather prediction. The
resulting WRF-PartMC-MOSAIC model uses a 3D Eulerian grid for the atmospheric fluid
flow, while explicitly resolving the evolution of individual aerosol particles per grid cell. This
next-generation model captures complex aerosol composition that current-generation models
are unable to simulate.

Focus of this allocation. The work of this allocation focused on demonstrating the com-
putational feasibility of the model to be run on Blue Waters for a realistic, regional-scale
domain. We also tackled the science question of quantifying how important the details of
aerosol composition are for estimating aerosol-climate interactions.

Blue Waters is essential as particle-resolved 3D atmospheric modeling is both
compute-intensive and memory-intensive. A petascale resource with the capabilities
of Blue Waters allows for using a cutting edge model that pushes science and computing by
combining the large-scale features of state-of-the-art 3D chemical transport models with the
process-level physical representation of box models. Simulations of aerosols at both a high
spatial and compositional resolution requires tens of thousands of cores, fast interconnections
between those cores, and sufficient memory per process. Given our problem size and the
decomposed subdomain being as small as 1×1 in the horizontal, allocations on Blue Waters
are necessary to achieve our scientific goals both now and in the future.

3 Code performance

WRF-PartMC performs well at the HPC scale. As a result of our previous Blue
Waters allocations, the WRF-PartMC model was ported and evaluated at previously un-
obtainable scale. Previously, we tested both weak and strong scaling for future general
allocations on the Blue Waters system. The results of this scaling are shown in Figure 1.

Stochastic algorithms make this model computationally feasible. Specifically, stochastic
sampling techniques are used to simulated particle coagulation events, avoiding the testing
for all possible events, and stochastic transport removes the necessity to track and update
actual particle position. In addition, the model utilizes domain decomposition that can
efficiently allow for parallelization. Given our problem size and the decomposed subdomain
being as small as 1×1 in the horizontal, an allocation on Blue Waters is necessary to achieve
our scientific goals. Despite increased complexity of the simulation on a realistic domain,
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Figure 1: Scaling properties of the 3D particle-resolved WRF-PartMC on Blue Waters on
XE nodes. Left: Data shows the weak scaling properties in terms of wall clock time per
model time step. Each core was used to simulate a 1 × 1 × 60 subdomain with 10 000
computational particles per grid cell. Right: Strong scaling performance using 10 000 com-
putational particles per grid cell and an initial domain size of 120 × 120 × 60. The problem
size per core ranged from 3 × 3 × 60 to 1 × 1 × 60.

including complex wind patterns and spatially distributed emissions from many different
sources of particles and trace gases, the simulation continues to scale well allowing for 1 × 1
columns per core.

4 Accomplishments and milestones

With this allocation, error quantification in climate-relevant quantities was pos-
sible for the first time for a realistic 3D domain. In addition to quantifying errors,
model results will be useful in the future for benchmarking more simplistic aerosol models.
Particle-resolved modeling allows for the full representation of aerosol composition. We de-
veloped a framework that takes mass-based aerosol emission fluxes, which are typically used
for traditional chemical transport simulations, and converts them to number-based emissions
fluxes, consistent with the PartMC framework. With this approach the source information
of particles can be easily tracked. Figure 2 shows a subset of the tracked emission classes
and their spatial distribution over the domain of interest.

We applied the model to the spatial domain of North Carolina. An ensemble of
simulations was conducted over the domain in Figure 3. The model domain was 67×53×30
with 12 km horizontal grid spacing. Figure 3 shows the total particle number emission rates,
as well as the number of emission classes originating within each grid cell. Rural areas have
few types of emission sources, while urban areas, such as Charlotte, contained as many as 25
different emission sources. Figure 4 shows the WRF simulated wind field that determines the
stochastic advection of aerosol particles (left) after 6 hour of simulation, and the horizontal
distribution of number concentration of particles containing black carbon near the surface
(right).
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Figure 2: Emission number flux for four different sources: Internal combustion boilers, off-
highway vehicles, external combustion boilers and highway vehicles. Each emission source
has its unique composition profile.
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Figure 3: Total particle number emission flux (left) and total number of tracked source
modes (right). The urban areas show a larger particle number emission flux as well as a
larger number of particle sources per grid cell.
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Figure 4: Wind field after 6 hour of simulation (left) and corresponding horizontal distribu-
tion of simulated number concentration of black-carbon-containing particles near the surface
(right).
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Figure 5: 2D histograms of black carbon mixing state at points A and B.

The WRF-PartMC-MOSAIC model captures the continuum of aerosol compositions. As
an illustrative example, Figure 5 shows the aerosol composition at points A and B, marked
in Figure 4. At Point A, which is located near an urban area, we find a wide variety
of particle compositions. Emission classes that contain black carbon at this location are
labeled in Figure 5 with highway vehicles containing the largest black carbon mass fractions.
At Point B, which is located upwind of areas of higher emissions, less freshly emitted black
carbon particles are present.

Tracking contributing sources to aerosol number concentration. Figure 6 shows
the associated number concentration of particles that contain some fraction of mass from a
particular source, contrasting Points A and B. At Point A, which is located downwind from
major interstates in North Carolina, we find a large contribution from highway vehicles. This
source is absent at Point B, which is not located in the vicinity of a highway.

As the model tracks composition and source information of thousands of computational
particles per grid cell, individual particles may also be explored such as shown in Figure 7.
Here a particle with a particular size and black carbon mass fraction has been selected,
marked with a red dot in Figure 5. In Figure 7 (left) the mass of each constituent species
is shown for a single particle with the chosen particle containing primarily dust, emitted
organic and black carbon and has undergone chemical transformation due to condensation
of nitrate. Figure 7 (right) shows the original sources of this particle that formed from
coagulation events to contain portions from industrial processes and waste burning. These
capabilities will be useful in the future for quantifying how much individual source categories
are contributing to the pollution at a certain location.

Quantifying the importance of mixing state for CCN activity. To evaluate CCN
prediction errors, CCN concentrations were compared from a particle-resolved simulation to
a composition-averaged simulation. The composition-averaged simulation mimics the aerosol
representation in traditional aerosol models by assigning identical, averaged composition to
particles having the same size. By comparing model results using the two representations,
the effect of aerosol mixing state on model errors in CCN concentrations was determined.
Figure 8 (left) shows the over- and underestimation of CCN number concentrations when
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Figure 6: Particle source information of aerosol populations at points A and B. The origi-
nating source of all particles is tracked throughout a simulation.
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Figure 7: Composition information (left) and source information (right) of a single particle
at point A.
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mixing state information is ignored.
Figure 8 (right) shows the critical supersaturation of particles before and after compo-

sition averaging. The red and blue regions represent particles that activate in one case but
not the other, leading to a mis-categorization of the particles. Composition-averaged particle
populations may have higher CCN number concentrations as particles that are hydrophobic
become hydrophilic when artificially coated with inorganics (such as nitrate and sulfate).
This results in particles activating when aerosol mixing state is assumed to be internally
mixed (particles in the blue region). Likewise, a redistribution of composition may result
in particles no longer activating. The CCN error is determined by the difference in number
concentration of particles in the blue and red area. The two effects may lead to a partial or
total cancellation. As a result, we may obtain a small error, but for the wrong reasons.

How internally mixed is the aerosol over our modeling domain? The mixing state
parameter χ, as described in Riemer and West (2013), quantifies the extent to which the
particle population is internally mixed. Specifically, the mixing state parameter χ is given
by the relationship, χ = (Dα − 1)/(Dγ − 1), where Dα is the alpha diversity and Dγ is the
gamma diversity. Alpha diversity, Dα, reflects the average per-particle effective number of
species in the populations. Values of Dα can fall in the range 1 ≤ Dα ≤ A, where A is the
number of species. Dα = 1 when all particles are composed of a single species, while Dα = A
when all particles have identical mass fractions. The gamma diversity Dγ reflects the bulk
population species diversity. Values of bulk species diversity range from 1 ≤ Dγ ≤ A, where
Dγ = A when all species in the bulk appear in equal amounts. The values of χ range from
0 for a fully externally mixed particle population to 1 for a fully internally mixed particle
population. Current-generation aerosol models used in climate models commonly assume
internal mixtures. This assumption may cause large errors in their estimation of climate
impacts when the aerosol is in reality more externally mixed.

Figure 9 shows horizontal distributions of the mixing state parameter. This tells us how
internally or externally mixed the aerosol is over the entire domain. We can define different
variants of the mixing state index, as illustrated in Figure 9A, B, and C. Figure 9A shows
the mixing state based on chemical composition. In the central regions emission rates are
higher and from many divers sources as shown in Figure 3. This results in a lower mixing
state parameter, signifying a more externally mixed aerosol population. Figure 9B depicts
the mixing state parameter based on the mixing of hydrophobic and hygroscopic aerosol
material, and Figure 9C is the mixing state parameter based on the mixing of absorbing and
non-absorbing aerosol material. Both Figure 9B and Figure 9C show more externally mixed
populations in the central region of the state, while in the east and west part of the state
the aerosol is rather internally mixed.

5 Next Generation Work: Track-1 systems in 2019-

2020.

The next-generation Track-1 systems will allow for improved resolution simulations and
model improvements for physical processes. Higher detail may consist of a variety of possi-
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Figure 8: (left) Percentage error in CCN number concentrations when aerosol mixing state is
neglected when compared to the particle-resolved representation. (right) Critical supersat-
urations of particles when particle-resolved and when mixing state is neglected. Red region
indicates when underestimation occurs, and blue region indicates when overestimation oc-
curs.
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Figure 9: Map of mixing state parameter with (A) χ (mixing state index based on chem-
ical composition), (B) χCCN (mixing state index based on the mixing of hydrophobic and
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ble model refinements including (1) the domain may be represented with a higher-resolution
spatial grid, (2) more emission source classes may be tracked, (3) increased number of simu-
lated particles per grid cell, and (4) inclusion of more advanced aerosol chemistry modules.

This would facilitate comparisons between particle-resolved simulated results and field
measurements of per-particle aerosol composition. Due to the microscale nature of aerosols,
modeling efforts are particularly important in combination with field measurements and
laboratory studies, to advance process-level understanding of the key interactions among
aerosols, clouds and radiation, with the ultimate goal of reducing the uncertainty in global
and regional climate simulations and projections.

6 Publications and products

• Telluride Workshop on Aerosol-Cloud Interactions, June 29, 2016, oral presentation by
N. Riemer titled “Towards a multiscale aerosol modeling hierarchy”.

• Invited seminar in the Computational Science and Engineering seminar series, October
26, 2016, by N. Riemer, titled “Stochastic Particle-Resolved Models for Atmospheric
Simulation”.

• American Meteorological Society 97th Annual Meeting 19th Conference on Atmo-
spheric Chemistry, January 26, 2017 oral presentation by J. Curtis titled “A 3D
Particle-resolved Model to Represent Aerosol Mixing State”.

• Poster at the Department of Energy 2017 Atmospheric Radiation Measurement/Atmospheric
System Research (ARM/ASR) PI Meeting March 13–16, 2017, presented by J. Curtis,
titled “A 3D Particle-resolved Model to Quantify Spatial and Temporal Variations in
Aerosol Mixing State”.

• Model development paper in-preparation for submission to Geophysical Model Devel-
opment regarding the extension to 3-D spatial domains. J. Curtis, N. Riemer, and M.
West, Importance of resolving aerosol mixing state: insights into cloud condensation
nuclei activity using the particle-resolved 3D regional model WRF-PartMC-MOSAIC.
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