
Performance Analysis of Large Scale Deep Learning Systems

January	15,	2017	–	July	14,	2017	
	

• Project	Information	
o Project	title:	Performance	Analysis	of	Large	Scale	Deep	Learning	

Systems	
o PI: William Gropp, University of Illinois Urbana-Champaign
o Collaborators: Roy Campbell, Sayed Hadi Hashemi, University of Illinois

Urbana-Champaign
o Contact: wgropp@illinois.edu

• Executive	summary	(150	words)	

In	recent	years,	there	has	been	a	substantial	growth	of	interest	in	neural	networks	
with	many	layers	usually	referred	to	as	Deep	Learning.	It	has	been	observed	that	
increasing	the	number	of	training	data	and	the	number	of	parameters	of	these	
models	can	improve	their	accuracy	significantly.	This	observation	led	to	huge	
interest	in	large-scale	training	of	these	models.	However,	existing	distributed	
implementations	of	the	deep	learning	training	process	lacks	efficiency	across	a	large	
set	of	machines,	limiting	their	scalability.	The	efficiency	loss	is	caused	by	the	high	
overhead	of	message	passing	between	multiple	machines	as	well	as	CPU/GPU	data	
transfer	within	nodes.	We	have	built	TensorFlow	on	Blue	Waters,	enhanced	the	
runtime	tracing,	and	benchmarked	two	different	communication	steps.	

• Description	of	research	activities	and	results	
o Key	Challenges:	The	most	common	deep	learning	methods	do	not	

parallelize	well	on	distributed	memory	systems.	
o Why	it	Matters:	Increasingly	complex	deep	learning	models	as	well	as	

large	data	sets	make	training	these	models	increasingly	expensive.	
Improved	parallelization	can	dramatically	reduce	training	times,	
enabling	faster	generation	and	evaluation	of	different	approaches.	

o Why	Blue	Waters:	Blue	Waters	provides	a	good	environment	for	
conducting	these	tests	because	of	the	availability	of	both	GPU	and	
non-GPU	nodes,	a	very	fast	I/O	system,	and	sufficient	numbers	of	
nodes	to	permit	testing	at	scale.	

o Accomplishments:		

Our	main	contributions	were:	
1. Distributed	TensorFlow	(TF)	on	Blue	Waters:	We	have	successfully	installed	

and	deployed	the	latest	version	of	TF	on	Blue	Waters.	Since	Blue	Waters	has	
an	old	unsupported	glibc,	we	ended	up	running	TF	in	a	container.	

2. Distributed	Runtime	Tracing	Tools:	We	have	extended	the	built-in	tracing	
capability	in	TensorFlow	to	record	network	transfer	activities	in	a	
distributed	fashion	(This	change	has	been	merged	to	the	TF	codebase).	

Furthermore,	we	have	developed	a	visualization	tool	for	distributed	traces.	
The	tool	is	publicly	accessible.	Figure	1	shows	a	sample	of	the	visualization.	

3. Parameter	Server	vs.	In-Graph	All-Reduce:	We	studied	the	performance	
impact	of	the	synchronization	method	in	model-replica	training	jobs.	We	
implemented	two	all-reduce	algorithms	(bucket	and	halving-doubling)	as	an	
in-graph	operation	in	TensorFlow.	This	makes	the	implementation	
independent	of	the	underlying	network.	Figure	2	shows	the	result	of	our	
work.	While	Parameter	Server	(PS)	exposes	better	performance	with	fewer	
workers,	the	All-reduce	(AR)	has	better	scalability	for	larger	numbers	of	
workers.		

4. Partial	Ordering	of	Network	Transfers:	We	observed	that	the	order	of	
network	transfers	have	a	significant	performance	impact	on	distributed	
execution	runtime.	We	have	proposed	an	ordering	algorithm	and	developed	
an	ordering	enforcing	mechanism	on	TF.	The	result	is	up	to	8x	less	variation	
in	step	time,	and	up	to	68%	reduction	of	step	time.	

	

	
Figure	1:	Example	of	tracing	visualization.	

	

Figure	2:	Comparison	of	scaling	using	parameter	server	(PS)	and	All-reduce	(AR)	methods	

• List	of	publications,	data	sets	associated	with	this	work	

Hashemi,	Sayed	Hadi,	Sangeetha	Abdu	Jyothi,	and	Roy	Campbell.	"On	The	
Importance	of	Execution	Ordering	in	Graph-Based	Distributed	Machine	Learning	
Systems."	SysML	2018.	
	
Hashemi,	Sayed	Hadi,	Sangeetha	Abdu	Jyothi,	and	Roy	Campbell.	"Communication	
Scheduling	as	a	First-Class	Citizen	in	Distributed	Machine	Learning	Systems."	
Submitted	to	USENIX	ATC	’18	(under	review).	
	
Hashemi,	Sayed	Hadi,	Sangeetha	Abdu	Jyothi,	and	Roy	Campbell.	Network	Efficiency	
through	Model-Awareness	in	Distributed	Machine	Learning	Systems"	Submitted	to	
USENIX	NSDI	’18	(under	review).	

	
	
	

